50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

如何使用半监督学习为结构化数据训练出更好的深度学习模型

  • 2020-10-22
  • 本文字数:2368 字

    阅读完需:约 8 分钟

如何使用半监督学习为结构化数据训练出更好的深度学习模型

本文最初发表于 Towards Data Science 博客,经原作者 Youness Mansar 授权,InfoQ 中文站翻译并分享。


众所周知,深度学习在应用于文本、音频或图像等非结构化数据时效果很好,但在应用于结构化或表格化数据时,深度学习有时会落后于其他机器学习方法,如梯度提升等。在本文中,我们将使用半监督学习来提高深度神经模型在低数据环境下应用于结构化数据时的性能。我们将展示通过使用无监督的预训练,可以使神经模型的性能优于梯度提升。


本文是基于以下两篇论文:



我们实现了一个类似于 AutoInt 论文中提出的深度神经结构,使用了多头自注意力和特征嵌入。预训练部分取自 TabNet 的论文。

方法说明

我们将处理结构化数据,这意味着可以将数据写成具有列(数字、分类、序号)和行的表。我们还假设我们有大量的未标记样本,可以用于预训练,以及少量的标记样本,可用于监督学习。在接下来的实验中,我们将模拟这个环境来绘制学习曲线,并在使用不同大小的标记集时对该方法进行评估。

数据准备

让我们用一个例子来描述在将数据提供给神经网络之前我们是如何准备数据的。



在这个例子中,我们有三个样本和三个特征 {F1,F2,F3} 和一个目标。F1 是分类特征,而 F2 F3 是数字特征。


我们将为 F1 的每个模态 X 创建一个新特征 F1_X,如果 F1==X,则为其赋值 1,否则等于 0。


转换后的样本将写入一组 (Feature_Name, Feature_Value)


例如:


第一个样本 → {(F1_A, 1), (F2, 0.3), (F3, 1.3)}


第二个样本 → {(F1_B, 1), (F2, 0.4), (F3, 0.9)}


第三个样本 → {(F1_C, 1), (F2, 0.1), (F3, 0.8)}


特征名称将被馈送到嵌入层,然后与特征值相乘。

模型:

这里使用的模型是一个多头注意力块序列和逐点前馈层。在训练时,我们也使用池化的注意力跳过连接。多头注意力模块允许我们对特征之间可能存在的交互进行建模,而池化的注意力跳过连接允许我们从一组特征嵌入中获得单个向量。


预训练

在预训练步骤中,我们使用完整的未标记数据集,输入特征的损坏版本,并训练模型来预测未损坏的特征,类似于在去噪自动编码器中所做的操作。

监督式训练

在训练的监督部分,我们在编码器部分和输出端之间添加跳过连接,并尝试预测目标。


实验

在接下来的实验中,我们将使用四个数据集,其中两个用于回归,两个用于分类。


  • Sarco:有大约 5 万个样本,21 个特征和 7 个连续目标。

  • Online News:有 4 万个左右的样本,61 个特征和 1 个连续目标。

  • Adult Census:有大约 4 万个样本、15 个特征和 1 个二元目标。

  • Forest Cover:有大约 50 万个样本,54 个特征和 1 个分类目标。


我们将比较一个预训练神经模型和一个从零开始训练的神经模型,将重点关注地数据状态下的性能,这意味着几百到几千个标记样本。我们还将于一个流行的名为lightgbm的梯度提升实现进行比较。

Forest Cover:

Adult Census:


对于这个数据集,我们可以看到,如果训练集小于 2000,那么预训练是非常有效的。

Online News:

对于 Online News 数据集,我们可以看到,预训练神经网络是非常有效的,甚至在所有样本大小为 500 或更大的情况下都超过了梯度提升。



对于 Sarco 数据集,我们可以看到,预训练神经网络是非常有效的,甚至在所有样本大小的情况下超过了梯度提升。


旁注:用于重现结果的代码

重现结果的代码可以在这里找到:


https://github.com/CVxTz/DeepTabular


使用这段代码,你可以很轻松地训练分类或回归模型:


import pandas as pdfrom sklearn.model_selection import train_test_splitfrom deeptabular.deeptabular import DeepTabularClassifierif __name__ == "__main__":data = pd.read_csv("../data/census/adult.csv")train, test = train_test_split(data, test_size=0.2, random_state=1337)target = "income"num_cols = ["age", "fnlwgt", "capital.gain", "capital.loss", "hours.per.week"]cat_cols = ["workclass","education","education.num","marital.status","occupation","relationship","race","sex","native.country",]for k in num_cols:mean = train[k].mean()std = train[k].std()train[k] = (train[k] - mean) / stdtest[k] = (test[k] - mean) / stdtrain[target] = train[target].map({"<=50K": 0, ">50K": 1})test[target] = test[target].map({"<=50K": 0, ">50K": 1})classifier = DeepTabularClassifier(num_layers=10, cat_cols=cat_cols, num_cols=num_cols, n_targets=1,)classifier.fit(train, target_col=target, epochs=128)pred = classifier.predict(test)classifier.save_config("census_config.json")classifier.save_weigts("census_weights.h5")new_classifier = DeepTabularClassifier()new_classifier.load_config("census_config.json")new_classifier.load_weights("census_weights.h5")new_pred = new_classifier.predict(test)
复制代码

结论

在计算机视觉或自然语言领域,无监督预训练可以提高神经网络的性能。在本文中,我们展示了它在应用于结构化数据时也能起作用,使其在低数据环境与其他机器学习方法(如梯度提升)具有竞争力。


作者简介:


Youness Mansar,供职于 Fortia Financial Solutions 的数据科学家。巴黎中央理工学院(Ecole Centrale Paris)应用数学硕士学位和巴黎-萨克雷高等师范学校(École normale supérieure Paris-Saclay)机器学习硕士。作为 Fortia 的数据科学家,曾参与过多个涉及自然语言处理和深度学习的项目。


原文链接:


https://towardsdatascience.com/training-better-deep-learning-models-for-structured-data-using-semi-supervised-learning-8acc3b536319


2020-10-22 09:002706
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 596.6 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

看山聊 Java:从零实现“百度网盘批量重命名”工具

看山

Java 工具集 10月月更

Java大厂高级面试题灵魂100问,linux操作系统教程pdf,卧槽

Java 程序员 后端

Java大神需要掌握的技术,java开发技术教程,字节大牛教你手撕Java学习

Java 程序员 后端

Java学习笔记在互联网上火了,帮你深度探寻Spring循环依赖源码实现

Java 程序员 后端

Java工作资料,java编程思想第五版百度云,面试官6个灵魂拷问

Java 程序员 后端

Java工程师最容易遇到4个瓶颈是什么,Java架构面试题spring原理

Java 程序员 后端

Java小技巧,springboot菜鸟教程电子版,腾讯T2手把手教你

Java 程序员 后端

Java岗面试必问!java面试题pdf下载百度云,Java程序员算法书籍

Java 程序员 后端

Java工程师面试该怎么准备,尚硅谷java百度网盘,Java技术图谱

Java 程序员 后端

XA 分布式事务

风翱

分布式事务 10月月更

Java开发三年月薪才12K,java图形化界面教程,linux网络架构详解

Java 程序员 后端

Java开发中遇到最难的问题,redis视频教程韩顺平,附小技巧

Java 程序员 后端

Java外包是如何转正网易的,面试阿里的时候一定会问到的

Java 程序员 后端

Java学习路线指南,思维导图+源代码+笔记+项目

Java 程序员 后端

Java官方入门教程pdf,开课吧在线教育,面试分享一次成功的经历

Java 程序员 后端

最近几天在 InfoQ 连更的再反思

baiyutang

10月月更

Java开发五年,java百度人脸识别,最全153道Spring全家桶面试题

Java 程序员 后端

Java开发人员不得不收集的代码,精选Java面试真题集锦

Java 程序员 后端

【大咖直播】Elastic Security 安全管理实战工作坊(第二期)

腾讯云大数据

elasticsearch

Java就业班资料,极客大学算法训练营百度网盘,Java面试总结

Java 程序员 后端

Java开发从零开始,牛客网java选择题库,程序员Javaweb源码

Java 程序员 后端

Java学习笔记在互联网上火了,Java开发实战讲解

Java 程序员 后端

Java就业班视频,尚硅谷众筹项目视频及源码,spring框架教程

Java 程序员 后端

Java多态实现原理解析,掌握这套精编Java高级面试题解析

Java 程序员 后端

Java学习笔记在互联网上火了,linux视频教程在线,面试官让我下周来上班

Java 程序员 后端

Java工程师进阶,马士兵架构师破解吧,我的Java春季历程

Java 程序员 后端

Java并发原理解析!图灵学院四期java架构师,Java零基础入门视频

Java 程序员 后端

Java开发人员不得不收集的代码,史上最全的微服务专业术语面试50问

Java 程序员 后端

Java大厂74道高级面试合集,我凭借这份PDF的复习思路

Java 程序员 后端

Java小技巧:尚学堂视频百度云密码,靠着这份900多页的PDF面试整理

Java 程序员 后端

Java开发从零开始,java基础入门传智播客网页版,Java后端路线图

Java 程序员 后端

如何使用半监督学习为结构化数据训练出更好的深度学习模型_AI&大模型_Youness Mansar_InfoQ精选文章