写点什么

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理

  • 2019-10-18
  • 本文字数:2706 字

    阅读完需:约 9 分钟

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理

作为肠胃科医生和皮肤科医生的后代,在我的成长过程中一直充满了各种晦涩难懂的对话,包含无穷无尽的复杂医学术语:人类解剖学、外科手术、药物名称……以及它们的缩略词。充满求知欲的小孩想知道他的父母是否对这些奇怪的话语感到难以理解,这真的是一段有趣的经历。


因此,非常高兴能发布 Amazon Comprehend Medical,这是 Amazon Comprehend 针对医疗保健客户的延伸。


关于 Amazon Comprehend 的简介


Amazon Comprehend 于去年在 AWS re:Invent 启用。简单来说,该自然语言处理服务针对语言检测、个体分类、情感分析和关键词提取提供了简洁实时 的 API。此外,它还允许您采用名为“主题建模”的无导师学习技术自动编组文本档案。


使用 FINRA、LexisNexis 或 Isentia、Amazon Comprehend 可以理解一般用途的文本。然而,鉴于临床资料非常特殊的属性,医疗保健客户已经要求我们设立专为其特殊需求而定制的 Amazon Comprehend 版本。


隆重推出 Amazon Comprehend Medical


Amazon Comprehend Medical 设于 Amazon Comprehend 顶部,并增加了以下功能:


  • 支持在大量医疗术语词汇中进行个体提取和个体识别:解剖、病情、手术、药物、缩略词等。

  • 在这些类目和子类中精确查找个体提取 API (detect_entities) 。

  • 受保护健康信息提取 API (detect_phi) 可以查找详细联系信息、医疗记录号等。

  • 提醒:Amazon Comprehend Medical 可能无法准确识别所有情况下的受保护健康信息,无法满足 HIPAA 的受保护健康信息去识别化要求。您有责任审阅 Amazon Comprehend Medical 提供的任何输出信息,以确保其满足您的需求。


现在,让我向您展示如何使用这一新服务。首先,我将使用 AWS 控制台,然后会运行一个简单的 Python 示例。


在 AWS 控制台上使用 Amazon Comprehend Medical


打开 AWS 控制台,所有需要做的是粘贴部分文本并点击“分析”按钮。



正在分析文本立即处理文档。个体被提取出来并突出显示:我们看到个人信息为橙色,药物为红色,解剖学信息为紫色,病情为绿色。



准确获得个人识别信息。对于在交流或出版前需要对文档隐去姓名资料的研究者而言,这是非常重要的。而且,“皮疹”和“睡眠障碍”被准确检测为由医生诊断出的病情(‘Dx’ 是“诊断”的速记写法)。也会检测到药物。


然而,Amazon Comprehend Medical 不仅限于简单的医疗术语提取。它还可以理解复杂的关系,如药物剂量或详细的诊断信息。这有一个很好的例子。



如您所见,Amazon Comprehend Medical 可以找出 ‘po‘ 和 ‘qhs‘ 等缩略词:第一个表示药物为口服,第二个则为 ‘quaque hora somni‘(是的,拉丁语)的缩略词,即为睡前。


现在,让我们稍微深入一点,运行一个 Python 示例。


用 AWS SDK 针对 Python 使用 Amazon Comprehend Medical


首先,我们输入 boto3 SDK,创建一个服务客户端。


import boto3comprehend = boto3.client(service_name='comprehendmedical')
复制代码


现在,我们在文本样本中调用 detect_entity API,并打印检测到的个体。


text = "Pt is 40yo mother, software engineer HPI : Sleeping trouble on present dosage of Clonidine.Severe Rash  on face and leg, slightly itchy  Meds : Vyvanse 50 mgs po at breakfast daily, Clonidine 0.2 mgs -- 1 and 1 / 2 tabs po qhs HEENT : Boggy inferior turbinates, No oropharyngeal lesion Lungs : clear Heart : Regular rhythm Skin :  Papular mild erythematous eruption to hairline Follow-up as scheduled"
result = comprehend.detect_entities(Text=text)entities = result['Entities']for entity in entities: print(entity)
复制代码


看一下该药物个体:它有三个嵌套属性(剂量、路径和频率),三个属性增加了至关重要的上下文。


{u'Id': 3,u'Score': 0.9976208806037903,u'BeginOffset': 145, u'EndOffset': 152,u'Category': u'MEDICATION',u'Type': u'BRAND_NAME',u'Text': u'Vyvanse',u'Traits': [],u'Attributes': [  {u'Id': 4,     u'Score': 0.9681360125541687,     u'BeginOffset': 153, u'EndOffset': 159,     u'Type': u'DOSAGE',     u'Text': u'50 mgs',     u'Traits': []     },  {u'Id': 5,     u'Score': 0.99924635887146,     u'BeginOffset': 160, u'EndOffset': 162,     u'Type': u'ROUTE_OR_MODE',     u'Text': u'po',     u'Traits': []     },  {u'Id': 6,     u'Score': 0.9738683700561523,     u'BeginOffset': 163, u'EndOffset': 181,     u'Type': u'FREQUENCY',     u'Text': u'at breakfast daily',     u'Traits': []     }]}
复制代码


还有另一个例子。该病情个体由“否定”识别完成,意味着未检测到病情,即为该患者没有任何口咽病变。


{u'Category': u'MEDICAL_CONDITION',u'Id': 16,u'Score': 0.9825472235679626,u'BeginOffset': 266, u'EndOffset': 286,u'Type': u'DX_NAME',u'Text': u'oropharyngeal lesion',u'Traits': [    {u'Score': 0.9701067209243774, u'Name': u'NEGATION'},    {u'Score': 0.9053299427032471, u'Name': u'SIGN'}]}
复制代码


我向为您展示的最后一个功能是用 detect_phi API 提取个人信息。


result = comprehend.detect_phi(Text=text) entities = result['Entities'] for entity in entities: print(entity)
复制代码


在该文本中出现了几条个人信息,我们精确提取出了这几条个人信息。


{u'Category': u'PERSONAL_IDENTIFIABLE_INFORMATION',u'BeginOffset': 6, u'EndOffset': 10, u'Text': u'40yo',u'Traits': [],u'Score': 0.997914731502533,u'Type': u'AGE', u'Id': 0}
{u'Category': u'PERSONAL_IDENTIFIABLE_INFORMATION',u'BeginOffset': 19, u'EndOffset': 36, u'Text': u'software engineer',u'Traits': [],u'Score': 0.8865673542022705,u'Type': u'PROFESSION', u'Id': 1}
复制代码


如您所见,Amazon Comprehend 可帮助您提取复杂的信息和关系,同时操作起来特别简单。


再次提醒,请记得 Amazon Comprehend Medical 并非专业医疗设备、诊断或治疗的替代品。您肯定要仔细审阅它提供的任何信息,并在作出决定前根据经验进行判断。


现已推出


我希望这篇博文提供了丰富的有用信息。您现在就可以开始用 Amazon Comprehend Medical 在以下地区开发应用程序:美国东部(弗吉尼亚北部)、美国中部(俄亥俄)、美国西部(俄勒冈)和欧洲(爱尔兰)。


此外,该服务属于 AWS 免费套餐范畴:注册后三个月,前 25000 份(或 250 万字)文本免费。


为什么不在最近的处方或医学考试中试一试,并让我们了解您的想法呢?


— Julien;


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/amazon-comprehend-medical-natural-language-processing-for-healthcare-customers/


2019-10-18 12:31927
用户头像

发布了 1929 篇内容, 共 155.5 次阅读, 收获喜欢 81 次。

关注

评论

发布
暂无评论
发现更多内容

Dubbo3 落地实践及 Mesh 解决方案

阿里巴巴中间件

阿里云 开源 云原生 dubbo 中间件

Redis「5」事件处理模型与键过期策略

Samson

学习笔记 Redis 核心技术与实战 5月月更

【JavaScript】数值转换为数值

恒山其若陋兮

5月月更

FinClip+系列 | VUE前端开发框架核心原理

Speedoooo

Vue 前端框架 移动开发 移动端开发 小程序容器

一文彻悟容器网络通信

阿里巴巴中间件

阿里云 容器 云原生 中间件

企评家|广州白云国际机场股份有限公司成长性报告简述

企评家

HDD·耀星领航出海峰会:华为游戏中心联运服务加速游戏出海获量增长

最新动态

HIVE3 深度剖析 (下篇)

明哥的IT随笔

大数据 hive

druid 源码阅读(七)Druid Filter 介绍

爱晒太阳的大白

5月月更

抢先预约 | 阿里云无影云应用线上发布会预约开启

阿里云弹性计算

无影云电脑 云应用

linux中vi,vim操作技巧

入门小站

Linux

OpenHarmony浏览器上新,在Dayu200开发板上终于能优雅地浏览网页

离北况归

浏览器 OpenHarmony Openharmony啃论文俱乐部 PIMF OpenHarmony应用安装

企评家 | 白银有色集团股份有限公司成长性评价简介

企评家

柏拉图会成为元宇宙风险标吗?PlatoFarm的机会很大

小哈区块

JavaWeb 数据库操作

Emperor_LawD

sql javaWeb 5月月更

源码分析 Flutter 的 setState 过程

岛上码农

flutter ios 前端 跨平台开发 5月月更

宠物类自媒体运营心得:如何才能拍得更有创意

石头IT视角

Cocos 常用功能介绍

空城机

Cocos 5月月更

6 月亚马逊云科技培训与认证课程,精彩不容错过!

亚马逊云科技 (Amazon Web Services)

架构师 培训 认证

腾讯云发布全新非关系型数据库KeeWiDB 搭载全自研存储引擎

科技热闻

飞书将于5月25日举行春季发布会 同步推出全新项目管理产品

陈泽涛

飞书 飞书项目

不会吧不会吧!听说还有人在手动迁移Vault密钥?

Jianmu

自动化 数据迁移 密钥 建木CI vault

在线TSV转YAML工具

入门小站

工具

李俊刚:我是如何在OpenHarmony完成ap6275s WiFi驱动的HDF适配工作的?

OpenHarmony开发者

OpenHarmony WiFi驱动

你中奖了吗?低代码开发师(高级)认证中奖名单揭晓啦!

一只大光圈

钉钉宜搭

先进数据中心背后,“东数西算”的三重意志

脑极体

直播预告丨Hello HarmonyOS进阶课程第三课——游戏开发实践

HarmonyOS开发者

游戏开发 HarmonyOS

在线文本列表补集计算工具

入门小站

工具

服务网格接口 SMI 规范解读

Flomesh

云原生 服务网格 SMI OpenServiceMesh

接口测试工具简介!

Liam

测试 自动化测试 测试工具 测试自动化 测试管理工具

企评家,企业数据分析评价提供投资信息支撑

企评家

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章