AI 年度盘点与2025发展趋势展望,50+案例解析亮相AICon 了解详情
写点什么

第四范式开源强化学习研究通用框架,支持单智能体、多智能体训练,还可训练自然语言任务!训练速度提升 17%

作者:黄世宇,第四范式强化学习研究员

  • 2023-05-06
    北京
  • 本文字数:6845 字

    阅读完需:约 22 分钟

第四范式开源强化学习研究通用框架,支持单智能体、多智能体训练,还可训练自然语言任务!训练速度提升17%

OpenRL 是由第四范式强化学习团队开发的基于 PyTorch 的强化学习研究框架,支持单智能体、多智能体、自然语言等多种任务的训练。OpenRL 基于 PyTorch 进行开发,目标是为强化学习研究社区提供一个简单易用、灵活高效、可持续扩展的平台。目前,OpenRL 支持的特性包括:


●简单易用且支持单智能体、多智能体训练的通用接口

●支持自然语言任务(如对话任务)的强化学习训练

●支持从 Hugging Face 上导入模型和数据

●支持 LSTM,GRU,Transformer 等模型

●支持多种训练加速,例如:自动混合精度训练,半精度策略网络收集数据等

●支持用户自定义训练模型、奖励模型、训练数据以及环境

●支持 gymnasium 环境

●支持字典观测空间

●支持 wandb,tensorboardX 等主流训练可视化工具

●支持环境的串行和并行训练,同时保证两种模式下的训练效果一致

●中英文文档

●提供单元测试和代码覆盖测试

●符合 Black Code Style 和类型检查


目前,OpenRL 已经在 GitHub 开源:https://github.com/OpenRL-Lab/openrl


OpenRL 初体验


OpenRL 目前可以通过 pip 进行安装:

pip install openrl
复制代码


也可以通过 conda 安装:


conda install -c openrl openrl
复制代码


OpenRL 为强化学习入门用户提供了简单易用的接口, 下面是一个使用 PPO 算法训练 CartPole 环境的例子:


# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentenv = make("CartPole-v1", env_num=9) # 创建环境,并设置环境并行数为9net = Net(env) # 创建神经网络agent = Agent(net) # 初始化智能体agent.train(total_time_steps=20000) # 开始训练,并设置环境运行总步数为20000
复制代码


使用 OpenRL 训练智能体只需要简单的四步:创建环境 => 初始化模型 => 初始化智能体 => 开始训练!


在普通笔记本电脑上执行以上代码,只需要几秒钟,便可以完成该智能体的训练:



此外,对于多智能体、自然语言等任务的训练,OpenRL 也提供了同样简单易用的接口。例如,对于多智能体任务中的 MPE 环境,OpenRL 也只需要调用几行代码便可以完成训练:


# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentdef train():    # 创建 MPE 环境,使用异步环境,即每个智能体独立运行    env = make(        "simple_spread",        env_num=100,        asynchronous=True,    )    # 创建 神经网络,使用GPU进行训练    net = Net(env, device="cuda")    agent = Agent(net) # 初始化训练器    # 开始训练    agent.train(total_time_steps=5000000)    # 保存训练完成的智能体    agent.save("./ppo_agent/")if __name__ == "__main__":    train()
复制代码


下图展示了通过 OpenRL 训练前后智能体的表现:



加载配置文件


此外,OpenRL 还同时支持从命令行和配置文件对训练参数进行修改。比如,用户可以通过执行 python train_ppo.py --lr 5e-4 来快速修改训练时候的学习率。


当配置参数非常多的时候,OpenRL 还支持用户编写自己的配置文件来修改训练参数。例如,用户可以自行创建以下配置文件 (mpe_ppo.yaml),并修改其中的参数:


# mpe_ppo.yamlseed: 0 # 设置seed,保证每次实验结果一致lr: 7e-4 # 设置学习率episode_length: 25 # 设置每个episode的长度use_recurrent_policy: true # 设置是否使用RNNuse_joint_action_loss: true # 设置是否使用JRPO算法use_valuenorm: true # 设置是否使用value normalization
复制代码


最后,用户只需要在执行程序的时候指定该配置文件即可:


python train_ppo.py --config mpe_ppo.yaml
复制代码


训练与测试可视化


此外,通过 OpenRL,用户还可以方便地使用 wandb 来可视化训练过程:



OpenRL 还提供了各种环境可视化的接口,方便用户对并行环境进行可视化。用户可以在创建并行环境的时候设置环境的渲染模式为"group_human",便可以同时对多个并行环境进行可视化:


env = make("simple_spread", env_num=9, render_mode="group_human")
复制代码


此外,用户还可以通过引入 GIFWrapper 来把环境运行过程保存为 gif 动画:


from openrl.envs.wrappers import GIFWrapperenv = GIFWrapper(env, "test_simple_spread.gif")
复制代码


智能体的保存和加载


OpenRL 提供 agent.save() 和 agent.load() 接口来保存和加载训练好的智能体,并通过 agent.act() 接口来获取测试时的智能体动作:


# test_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentfrom openrl.envs.wrappers import GIFWrapper # 用于生成gifdef test():    # 创建 MPE 环境    env = make( "simple_spread", env_num=4)    # 使用GIFWrapper,用于生成gif    env = GIFWrapper(env, "test_simple_spread.gif")    agent = Agent(Net(env)) # 创建 智能体    # 保存智能体    agent.save("./ppo_agent/")        # 加载智能体    agent.load('./ppo_agent/')    # 开始测试    obs, _ = env.reset()    while True:        # 智能体根据 observation 预测下一个动作        action, _ = agent.act(obs)        obs, r, done, info = env.step(action)        if done.any():            break    env.close()if __name__ == "__main__":    test()
复制代码


执行该测试代码,便可以在同级目录下找到保存好的环境运行动画文件 (test_simple_spread.gif):



训练自然语言对话任务


最近的研究表明,强化学习也可以用于训练语言模型, 并且能显著提升模型的性能。目前,OpenRL 已经支持自然语言对话任务的强化学习训练。OpenRL 通过模块化设计,支持用户 加载自己的数据集 , 自定义训练模型, 自定义奖励模型, 自定义 wandb 信息输出 以及 一键开启混合精度训练 等。


对于对话任务训练,OpenRL 提供了同样简单易用的训练接口:


# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentfrom openrl.configs.config import create_config_parserdef train():    # 添加读取配置文件的代码    cfg_parser = create_config_parser()    cfg = cfg_parser.parse_args()    # 创建 NLP 环境    env = make("daily_dialog",env_num=2,asynchronous=True,cfg=cfg,)    net = Net(env, cfg=cfg, device="cuda")    agent = Agent(net)    agent.train(total_time_steps=5000000)if __name__ == "__main__":    train()
复制代码


可以看出,OpenRL 训练对话任务和其他强化学习任务一样,都是通过创建交互环境的方式进行训练。


加载自定义数据集


训练对话任务,需要对话数据集。这里我们可以使用 Hugging Face 上的公开数据集(用户可以替换成自己的数据集)。加载数据集,只需要在配置文件中传入数据集的名称或者路径即可:


# nlp_ppo.yamldata_path: daily_dialog # 数据集路径env: # 环境所用到的参数    args: {'tokenizer_path': 'gpt2'} # 读取tokenizer的路径seed: 0 # 设置seed,保证每次实验结果一致lr: 1e-6 # 设置policy模型的学习率critic_lr: 1e-6 # 设置critic模型的学习率episode_length: 20 # 设置每个episode的长度use_recurrent_policy: true
复制代码


上述配置文件中的 data_path 可以设置为 Hugging Face 数据集名称 或者 本地数据集路径。此外,环境参数中的 tokenizer_path 用于指定加载文字编码器的 Hugging Face 名称 或者 本地路径。


自定义训练模型


在 OpenRL 中,我们可以使用 Hugging Face 上的模型来进行训练。为了加载 Hugging Face 上的模型,我们首先需要在配置文件 nlp_ppo.yaml 中添加以下内容:


# nlp_ppo.yaml# 预训练模型路径model_path: rajkumarrrk/gpt2-fine-tuned-on-daily-dialog use_share_model: true # 策略网络和价值网络是否共享模型ppo_epoch: 5 # ppo训练迭代次数
data_path: daily_dialog # 数据集名称或者路径env: # 环境所用到的参数 args: {'tokenizer_path': 'gpt2'} # 读取tokenizer的路径lr: 1e-6 # 设置policy模型的学习率critic_lr: 1e-6 # 设置critic模型的学习率episode_length: 128 # 设置每个episode的长度num_mini_batch: 20
复制代码


然后在 train_ppo.py 中添加以下代码:


# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentfrom openrl.configs.config import create_config_parserfrom openrl.modules.networks.policy_value_network_gpt import (    PolicyValueNetworkGPT as PolicyValueNetwork,)def train():    # 添加读取配置文件的代码    cfg_parser = create_config_parser()    cfg = cfg_parser.parse_args()    # 创建 NLP 环境    env = make("daily_dialog",env_num=2,asynchronous=True,cfg=cfg,)    # 创建自定义神经网络    model_dict = {"model": PolicyValueNetwork}    net = Net(env, cfg=cfg, model_dict=model_dict)    # 创建训练智能体    agent = Agent(net)    agent.train(total_time_steps=5000000)if __name__ == "__main__":    train()
复制代码


通过以上简单几行的修改,用户便可以使用 Hugging Face 上的预训练模型进行训练。如果用户希望分别自定义策略网络和价值网络,可以写好 CustomPolicyNetwork 以及 CustomValueNetwork 后通过以下方式从外部传入训练网络:


model_dict = {    "policy": CustomPolicyNetwork,    "critic": CustomValueNetwork,}net = Net(env, model_dict=model_dict)
复制代码


自定义奖励模型


通常,自然语言任务的数据集中并不包含奖励信息。因此,如果需要使用强化学习来训练自然语言任务,就需要使用额外的奖励模型来生成奖励。在该对话任务中,我们可以使用一个复合的奖励模型,它包含以下三个部分:


●意图奖励:即当智能体生成的语句和期望的意图接近时,智能体便可以获得更高的奖励。


●METEOR 指标奖励:METEOR 是一个用于评估文本生成质量的指标,它可以用来衡量生成的语句和期望的语句的相似程度。我们把这个指标作为奖励反馈给智能体,以达到优化生成的语句的效果。


●KL 散度奖励:该奖励用来限制智能体生成的文本偏离预训练模型的程度,防止出现 reward hacking 的问题。


我们最终的奖励为以上三个奖励的加权和,其中 KL 散度奖励 的系数是随着 KL 散度的大小动态变化的。想在 OpenRL 中使用该奖励模型,用户无需修改训练代码,只需要在 nlp_ppo.yaml 文件中添加 reward_class 参数即可:


# nlp_ppo.yamlreward_class:    id: NLPReward # 奖励模型名称    args: {        # 用于意图判断的模型的名称或路径        "intent_model": rajkumarrrk/roberta-daily-dialog-intent-classifier,        # 用于计算KL散度的预训练模型的名称或路径        "ref_model": roberta-base, # 用于意图判断的tokenizer的名称或路径    }
复制代码


OpenRL 支持用户使用自定义的奖励模型。首先,用户需要编写自定义奖励模型 (需要继承 BaseReward 类)。接着,用户需要注册自定义的奖励模型,即在 train_ppo.py 添加以下代码:


# train_ppo.pyfrom openrl.rewards.nlp_reward import CustomRewardfrom openrl.rewards import RewardFactoryRewardFactory.register("CustomReward", CustomReward)
复制代码


最后,用户只需要在配置文件中填写自定义的奖励模型即可:


reward_class:    id: "CustomReward" # 自定义奖励模型名称    args: {} # 用户自定义奖励函数可能用到的参数
复制代码


自定义训练过程信息输出


OpenRL 还支持用户自定义 wandb 和 tensorboard 的输出内容。例如,在该任务的训练过程中,我们还需要输出各种类型奖励的信息和 KL 散度系数的信息, 用户可以在 nlp_ppo.yaml 文件中加入 vec_info_class 参数来实现:


# nlp_ppo.yamlvec_info_class:    id: "NLPVecInfo" # 调用NLPVecInfo类以打印NLP任务中奖励函数的信息#设置wandb信息wandb_entity: openrl # 这里用于指定wandb团队名称,请把openrl替换为你自己的团队名称experiment_name: train_nlp # 这里用于指定实验名称run_dir: ./run_results/ # 这里用于指定实验数据保存的路径log_interval: 1 # 这里用于指定每隔多少个episode上传一次wandb数据# 自行填写其他参数...
复制代码


修改完配置文件后,在 train_ppo.py 文件中启用 wandb:


# train_ppo.pyagent.train(total_time_steps=100000, use_wandb=True)
复制代码


然后执行 python train_ppo.py –config nlp_ppo.yaml,过一会儿,便可以在 wandb 中看到如下的输出:



从上图可以看到,wandb 输出了各种类型奖励的信息和 KL 散度系数的信息。


如果用户还需要输出其他信息,还可以参考 NLPVecInfo 类 和 VecInfo 类来实现自己的 CustomVecInfo 类。然后,需要在 train_ppo.py 中注册自定义的 CustomVecInfo 类:


# train_ppo.py # 注册自定义输出信息类 VecInfoFactory.register("CustomVecInfo", CustomVecInfo)
复制代码


最后,只需要在 nlp_ppo.yaml 中填写 CustomVecInfo 类即可启用:


# nlp_ppo.yamlvec_info_class:    id: "CustomVecInfo" # 调用自定义CustomVecInfo类以输出自定义信息
复制代码


使用混合精度训练加速


OpenRL 还提供了一键开启混合精度训练的功能。用户只需要在配置文件中加入以下参数即可:


# nlp_ppo.yamluse_amp: true # 开启混合精度训练
复制代码


对比评测


下表格展示了使用 OpenRL 训练该对话任务的结果。结果显示使用强化学习训练后,模型各项指标皆有所提升。另外,从下表可以看出,相较于 RL4LMs , OpenRL 的训练速度更快(在同样 3090 显卡的机器上,速度提升 17% ),最终的性能指标也更好:



最后,对于训练好的智能体,用户可以方便地通过 agent.chat() 接口进行对话:


# chat.pyfrom openrl.runners.common import ChatAgent as Agentdef chat():    agent = Agent.load("./ppo_agent", tokenizer="gpt2",)    history = []    print("Welcome to OpenRL!")    while True:        input_text = input("> User: ")        if input_text == "quit":            break        elif input_text == "reset":            history = []            print("Welcome to OpenRL!")            continue        response = agent.chat(input_text, history)        print(f"> OpenRL Agent: {response}")        history.append(input_text)        history.append(response)if __name__ == "__main__":    chat()
复制代码


执行 python chat.py ,便可以和训练好的智能体进行对话了:



总结


OpenRL 框架经过了 OpenRL-Lab 的多次迭代并应用于学术研究和 AI 竞赛,目前已经成为了一个较为成熟的强化学习框架。OpenRL-Lab 团队将持续维护和更新 OpenRL,欢迎大家加入我们的开源社区,一起为强化学习的发展做出贡献。更多关于 OpenRL 的信息,可以参考:


●OpenRL 官方仓库:https://github.com/OpenRL-Lab/openrl/


●OpenRL 中文文档:https://openrl-docs.readthedocs.io/zh/latest/


致谢


OpenRL 框架的开发吸取了其他强化学习框架的优点:


Stable-baselines3: https://github.com/DLR-RM/stable-baselines3


pytorch-a2c-ppo-acktr-gail: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail


MAPPO: https://github.com/marlbenchmark/on-policy


Gymnasium: https://github.com/Farama-Foundation/Gymnasium


DI-engine: https://github.com/opendilab/DI-engine/


Tianshou: https://github.com/thu-ml/tianshou


RL4LMs: https://github.com/allenai/RL4LMs


未来工作


目前,OpenRL 还处于持续开发和建设阶段,未来 OpenRL 将会开源更多功能:


●支持智能体自博弈训练


●加入离线强化学习、模范学习、逆强化学习算法


●加入更多强化学习环境和算法


●集成 Deepspeed 等加速框架


●支持多机分布式训练


OpenRL Lab 团队


OpenRL 框架是由 OpenRL Lab 团队开发,该团队是第四范式公司旗下的强化学习研究团队。第四范式长期致力于强化学习的研发和工业应用。为了促进强化学习的产学研一体化,第四范式成立了 OpenRL Lab 研究团队,目标是先进技术开源和人工智能前沿探索。成立不到一年,OpenRL Lab 团队已经在 AAMAS 发表过三篇论文,参加谷歌足球游戏 11 vs 11 比赛并获得第三的成绩。团队提出的 TiZero 智能体,实现了首个从零开始,通过课程学习、分布式强化学习、自博弈等技术完成谷歌足球全场游戏智能体的训练:



截止 2022 年 10 月 28 日,Tizero 在及第评测平台上排名第一:



作者介绍


黄世宇,第四范式强化学习研究员。博士毕业于清华大学计算机系,博士导师是朱军和陈挺教授,本科期间在 CMU 交换,导师为 Deva Ramanan 教授。主要研究方向为强化学习,多智能体强化学习,分布式强化学习。曾在腾讯 AI Lab、华为诺亚、商汤、RealAI 工作。

2023-05-06 14:483927

评论

发布
暂无评论
发现更多内容

【消息队列最佳实践】消息恰好被消费一次

Java 程序员 后端

Java程序媛的秋招历程(附字节,阿里,百度,网易,美团等面经)

Java spring 程序员 面试 大厂

外包学生管理系统详细架构设计

stars

架构训练营

现代APaaS产品的5C特点

明道云

《黑客之道》-- 网络安全之利用0day双杀-java环境-宏感染渗透

学神来啦

网络安全 漏洞 渗透 kali

【设计模式系列24】GoF23种设计模式总结及软件设计7大原则

Java 程序员 后端

一个SpringBoot问题就干趴下了?我却凭着这份PDF文档吊打面试官

Java 程序员 后端

一周4大厂Java开发岗面试日记(已拿offer)

Java 程序员 后端

做云原生时代标准化工具,实现高效云上研发工作流

CODING DevOps

云原生 研发管理工具 CODING

【源码分析设计模式 10】SpringMVC中的适配器模式

Java 程序员 后端

【源码分析设计模式 9】SpringIOC中的模板方法模式

Java 程序员 后端

音频 AI 算法在 RTC 中的实践

网易云信

人工智能 算法 音视频

一文参透:缓存一致性策略以及雪崩、穿透等问题

Java 程序员 后端

【死磕JVM】什么是JVM调优?

Java 程序员 后端

【消息队列最佳实践】消息恰好被消费一次(1)

Java 程序员 后端

一个简单的字符串,为什么-Redis-要设计的如此特别?

Java 程序员 后端

【并发编程】Thread类的详细介绍

Java 程序员 后端

【数据结构 Java 版】玩转顺序表

Java 程序员 后端

【程序人生】为什么Java开发人员在简历上不敢轻易写精通Java(1)

Java 程序员 后端

【大厂技术内幕】字节跳动原来是这么做数据迁移的!

Java 程序员 后端

【并发编程系列3】volatile内存屏障及实现原理分析(JMM和MESI)

Java 程序员 后端

【数据库实验】《小型MIS的开发》

Java 程序员 后端

【数据结构与算法 11】常见的7种排序算法

Java 程序员 后端

【玩转Linux】史上最详细的Linux命令大全和线上问题排查手册

Java 程序员 后端

JDK16的新特性

程序那些事

Java 程序那些事 java16 11月日更 JDK16

【程序人生】为什么Java开发人员在简历上不敢轻易写精通Java

Java 程序员 后端

【设计模式系列14】组合模式及其在JDK和MyBatis源码中的运用

Java 程序员 后端

【设计模式系列17】中介者模式原理及其在JDK源码中的体现

Java 程序员 后端

【面试准备】Spring框架面试题

Java 程序员 后端

一个CURD三年的Java程序员刷完这份《阿里面试指南(恒山版)》

Java 程序员 后端

存储大师班 | 浅谈 RDMA 与无损网络

QingStor分布式存储

网络 分布式存储

第四范式开源强化学习研究通用框架,支持单智能体、多智能体训练,还可训练自然语言任务!训练速度提升17%_AI&大模型_InfoQ精选文章