写点什么

谷歌开源基于 TensorFlow 的神经结构学习框架 NSL,可用于图数据训练

  • 2019-09-05
  • 本文字数:2111 字

    阅读完需:约 7 分钟

谷歌开源基于TensorFlow的神经结构学习框架NSL,可用于图数据训练

我们很高兴能够介绍 TensorFlow 中的神经结构学习(Neural Structured Learning in TensorFlow),这是一套易于上手的框架,新手以及高级开发人员都能利用它训练具有结构化信号的神经网络。神经结构学习(NSL)可用于构建精确且健壮的视觉与语言理解及预测模型。



目前,众多机器学习任务得益于结构化数据的支持,这类数据当中包含丰富的样本间关系信息。例如,建模引文网络、知识图推理以及句子语言结构推理,乃至分子指纹学习等,都需要通过一套模型学习结构化输入信号,而非逐一分析单个样本,进而明确给出结构化(例如以图形形式)或者隐式(例如对抗性示例)推理结果。在训练期间采用结构化信号,也使得开发人员能够获得更高的模型精度,这一点在标记数据量相对较少显得尤为重要。结构化信号的训练也能够带来更强大的模型成果。目前,谷歌公司已经开始广泛采用这项技术提高模型性能,例如学习图像语义嵌入等场景。


神经结构学习(NSL)是一套开源框架,负责利用结构化信号训练深度神经网络。它能够实现神经图学习,使得开发人员得以利用图表训练神经网络。这些图表可以来自多种来源,例如知识图、医疗记录、基因组数据或者多模关系(例如图像-文本对)等。NSL 还可延伸至对抗学习领域,其中各输入实例间的结构以对抗性扰动方式动态构建而成。


NSL 帮助 TensorFlow 用户轻松将各类结构化信号结合起来,共同用于训练神经网络,同时适用于多种不同的学习场景,包括监督、半监督与无监督(表示)等设置。

神经结构学习(NSL)的工作原理


在神经结构学习(NSL)当中,结构化信号——无论是经过明确定义的图形,还是隐式学习性质的对抗性实例——都能够用于规范神经网络的训练。这将引导模型学会做出准确的预测(通过监督损失最小化),同时保证来自同一结构的输入之间具有相似性(通过相邻损失最小化,见上图)。这项技术具有通用性质,可用于任意神经架构,包括前馈神经网络、卷积神经网络以及递归神经网络等等。

利用神经结构学习(NSL)创建模型

利用 NSL,我们可以构建起模型,并确保其轻松直接地使用结构化信号。对于给定的图形(作为显式结构)以及训练亲本,NSL 提供一款专用工具,可处理这些示例并将其整合至 TFRecords 中以进行下游训练:


python pack_nbrs.py --max_nbrs=5 \labeled_data.tfr \unlabeled_data.tfr \graph.tsv \merged_examples.tfr 
复制代码


接下来,NSL 提供“环绕”该定制模型的 API,用于消费已处理示例并实现图形正则化。下面我们直接来看代码示例。


import neural_structured_learning as nsl# Create a custom model — sequential, functional, or subclass. base_model = tf.keras.Sequential(…)# Wrap the custom model with graph regularization. graph_config = nsl.configs.GraphRegConfig( neighbor_config=nsl.configs.GraphNeighborConfig(max_neighbors=1)) graph_model = nsl.keras.GraphRegularization(base_model, graph_config)# Compile, train, and evaluate. graph_model.compile(optimizer=’adam’,  loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[‘accuracy’]) graph_model.fit(train_dataset, epochs=5) graph_model.evaluate(test_dataset)
复制代码


只需要不到 5 千行额外代码(是的,包括注释!),我们就获得了一套能够在训练期间利用图形信号的神经模型。根据以往经验,使用图形结构将确保模型通过标记程度较低的数据进行训练,且不致损失太多准确率(例如,相较于原始监督训练,只损失 10%甚至 1%准确率)。

如果没有显式结构,该怎么办?

如果没有显式结构(例如图形),或者无法将其作为输入内容,该怎么办?NSL 为开发人员提供了利用原始数据构建图形的工具;此外,NSL 还提供 API 将对抗性示例“引导”为隐式结构化信号。利用对抗性示例对模型进行混淆性训练,通常会使模型对小幅输入扰动表现出更强的健壮性。我们将通过以下代码救命,了解 NSL 如何通过对抗性示例进行训练。


import neural_structured_learning as nsl# Create a base model — sequential, functional, or subclass. model = tf.keras.Sequential(…)# Wrap the model with adversarial regularization. adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.05) adv_model = nsl.keras.AdversarialRegularization(model, adv_config)# Compile, train, and evaluate. adv_model.compile(optimizer=’adam’, loss=’sparse_categorical_crossentropy’, metrics=[‘accuracy’]) adv_model.fit({‘feature’: x_train, ‘label’: y_train}, epochs=5) adv_model.evaluate({‘feature’: x_test, ‘label’: y_test})
复制代码


只需要不足 5 行额外代码(同样包括注释在内),我们就获得了一套神经模型。该模型能够利用具有隐式结构的对抗性示例完成训练。根据以往经验,在训练中未使用对抗性示例的模型,往往会在遭遇恶意(且人类无法检测到)扰动等输入内容时发生显著的准确率损失(例如下降 30%)。


试用 NSL 可以访问


https://www.tensorflow.org/neural_structured_learning/


原文链接:


https://medium.com/tensorflow/introducing-neural-structured-learning-in-tensorflow-5a802efd7afd


2019-09-05 11:097780

评论

发布
暂无评论
发现更多内容

软件测试/测试开发丨如何高效使用 Requests 做接口自动化测试

测试人

软件测试 自动化测试 接口测试 测试开发 requests

明道云技术路径选择及与LCDP的比较

明道云

前沿成果 | 澳鹏Appen团队两篇研究论文被国际顶会收录

澳鹏Appen

人工智能 机器学习 计算机视觉 nlp 数据标注

安全可信| 天翼云算力调度平台通过信通院首批可信算力云服务评估!

天翼云开发者社区

5月上海线下 · CSPO认证周末班【提前报名特惠】“价值交付课程”CST导师亲授

ShineScrum

国营单位工作4年转行网络安全,成功上岸安全开发!

网络安全学海

黑客 网络安全 信息安全 渗透测试 WEB安全

网上说低代码的一大堆,JNPF凭什么可以火?

引迈信息

前端 敏捷开发 低代码 快速开发 JNPF

软件测试/测试开发丨Chrome 浏览器+Postman还能这样做接口测试 ?

测试人

软件测试 Postman 自动化测试 接口测试 测试开发

【特别策划】2022年银行年报金融科技系列专题(一)

易观分析

金融科技 金融 银行

重磅消息 | 2023年腾讯云从业者课程全面升级

科技热闻

龙蜥开发者说:历时三周,记录如何从 0 到 1 构建龙蜥衍生版 | 第 18 期

OpenAnolis小助手

开源 操作系统 龙蜥社区 浪潮信息 衍生版

算云融合促发展,天翼云以领先云网算力助推数字中国建设!

天翼云开发者社区

大咖说丨云计算:数字世界的“中枢神经”

天翼云开发者社区

智改数转:这个制造业的必答题该如何作答?

加入高科技仿生人

低代码 数字化 制造业 智能化 智改数转

如何通过Java代码将添加页码到PDF文档?

在下毛毛雨

Java PDF 添加页码

从“卖船”到提供建造“航母” 的基础设施,用友BIP有底气

用友BIP

数据库原理及MySQL应用 | 程序流程控制

TiAmo

数据库 sql

分布式政企应用如何快速实现云原生的微服务架构改造

华为云开源

微服务 云原生

打破软件开发“不可能三角” 只需一个低代码方案

力软低代码开发平台

FastAPI 快速开发 Web API 项目: 定义路径参数和查询参数

宇宙之一粟

Python FastApi

再获权威认可!MIAOYUN入选中国信通院2022年度《云原生产品目录》

MIAOYUN

云计算 容器 云原生 容器云 容器云平台

容器化,让数据库如虎添翼

沃趣科技

MySQL 数据库 云原生 容器化

5月在线 · A-CSM认证周末班【提前报名特惠】“敏捷教练必修课程”CST导师亲授

ShineScrum

5月上海线下 · CSM认证周末班【提前报名特惠】“全球金牌课程”CST导师亲授

ShineScrum

保证高效写入查询的情况下,如何实现 CPU 资源和磁盘 IO 的最低开销?

TDengine

大数据 tdengine 数据处理 时序数据库 资源消耗

Springfox与SpringDoc——swagger如何选择(SpringDoc入门)

天翼云开发者社区

基于SpringBoot实现单元测试的多种情境/方法(二)

天翼云开发者社区

哪里有免费大文件传输平台?通过这4个网站免费来进行大文件传输

镭速

谷歌开源基于TensorFlow的神经结构学习框架NSL,可用于图数据训练_AI&大模型_Sujith Ravi_InfoQ精选文章