QCon 演讲火热征集中,快来分享你的技术实践与洞见! 了解详情
写点什么

Spark on Kubernetes 与 Spark on Yarn 不完全对比分析

  • 2022-03-10
  • 本文字数:3049 字

    阅读完需:约 10 分钟

Spark on Kubernetes 与 Spark on Yarn 不完全对比分析

前言


Apache Spark 是目前应用最广泛的大数据分析计算工具之一。它擅长于批处理和实时流处理,并支持机器学习、人工智能、自然语言处理和数据分析应用。随着 Spark 越来越受欢迎,使用量越来越大,狭义上的 Hadoop (MR) 技术栈正在收缩。另外,普遍的观点和实践经验证明,除了大数据相关的工作负载,Hadoop (YARN) 不具备相应的灵活性去跟更广泛的企业技术栈融合与集成。比如去承载一些在线业务,而这正是 Kubernetes(K8s) 所擅长的领域。事实上,Kubernetes 的出现为 Spark 的改进打开了一个新世界的大门,创造了更多机遇。如果能用统一的一套集群去运行所有在线和离线的作业,也是十分吸引人的事情。


Spark on Kubernetes 于 Spark 2.3 [1] 版本引入开始,到 Spark 3.1 [2] 社区标记 GA,基本上已经具备了在生产环境大规模使用的条件。



在业内,苹果[3], 微软[4], 谷歌,网易,华为、滴滴,京东等公司都已经有内部大规模落地或者对外服务的经典成功案例。

Spark on Kubernetes 应用架构


从 Spark 整体计算框架层面来看,只是在资源管理层面多支持了一种调度器,其他接口都可以完全复用。一方面 Kubernetes 的引入和 Spark Standalone、YARN、 Mesos 及 Local 等组件形成了一个更为丰富的资源管理体系。



另一方面,Spark 社区在支持 Kubernetes 特性的同时,对用户 API 的兼容度也得到了最大化的保留,极大程度上方便了用户任务的迁移。比如对于一个传统的 Spark 作业而言,我们通过简单的指定 --master 参数为 yarn 或者 k8s://xxx,即可完成两个调度平台的运行时切换。其他参数诸如镜像、队列、Shuffle 本地盘等配置, yarn 和 k8s 之间都是隔离的,可以很方便地统一在配置文件中统一维护。


Spark on Kubernetes vs Spark on YARN

易用性分析

Spark Native API


以 spark-submit 这种传统提交作业的方式来说,如前文中提到的通过配置隔离的方式,用户可以很方便地提交到 k8s 或者 YARN 集群上运行,基本上一样的简单和易用。这种方式对于熟悉 Spark API 及生态的用户而言是十分友好的,基本上没有对 k8s 技术栈的硬性要求。



可以看到,如果我们忽略 K8s 或者 YARN 的底层细节,基本上还是熟悉的配方熟悉的味道。

Spark Operator


另外,除了这种方式, Kubernetes 在 API 上更加丰富。我们可以通过 Spark Operator[6] 的方式, 如 kubectl apply -f 来创建和管理 Spark on k8s 应用。这种方式对于 Kubernetes 集群本身及用户而言无疑是最优雅的,而对没有 Kubernetes 经验的这部分 Spark 用户而言,有一定的学习成本。这种方式另一个好处是,Spark 的相关 lib 都可以通过 Docker 仓库来 Deploy,不需要单独的 Spark Client 环境来提交作业。单独的 Client 环境,容易造成版本和 Docker 不一致,增加运维成本,也会埋下引发一些不必要的线上问题的隐患。

Serverless SQL


当然,无论是 Spark 原生的还是 Operator 的方式,对大部分用户来说还是太原始了,不可避免的需要去感知一些底层的细节。在 Datalake/Lakehouse 场景下,数据变得民主,数据应用变得多样,很难去大范围地推广。在易用性上想更进一步,可以考虑使用 Apache Kyuubi (Incubating)[7]来构建 Serverless Spark/SQL 服务。大部分情况下,用户都可以直接使用 BI 工具或者 SQL 来直接操作数据即可。



一般而言,大部分企业都会有很多离线的 Hive 或者 Spark 任务跑在 YARN 集群上,如何将大量的历史任务平滑地迁移到 Kubernetes 上也是让人头疼的问题。Kyuubi 的服务化方案,可以通过服务发现机制,提供负载均衡节点,在服务高可用的基础上,来平滑地过渡。对于个别异常迁移任务,我们也可以方便地 Rollback 到 老集群上保障执行,也留给我们定位问题的时间和空间。


性能对比


从原理上,无论是 Kubernetes 和 YARN 都只起资源调度的作用,不涉及计算模型和任务调度的变化,所以在性能上的差异应该是不显著的。从部署架构上,Spark on Kubernetes 一般选择存算分离的架构,而 YARN 集群一般和 HDFS 耦合在一起,前者会 F 在读写 HDFS 时丧失“数据本地性”,这个由于网络带宽因素影响可能会影响性能。从存算耦合架构诞生之初经过 10 年左右的发展,随着网络的性能增长,各种高效的列式存储格式及压缩算法的加持,这点影响微乎其微。

Terasort 基准测试 (By Myself)


TPC-DS 基准测试(By Data mechanics)


TPC-DS 基准测试(By  AWS)



虽然这些测试结果都不是来自 TPC-DS 组织认证的官方数据,但从测试结果来自不同的机构这个因素上也有足够的说服力。我们屏蔽一些部署架构上的影响,两者的性能差距可以说是基本不存在的。

成本对比


将 Spark 作业迁移至 Kubernetes 集群上,可以实现离线和在线业务的混合部署,利用两种业务特征的对计算资源潮汐错峰效应,极致的情况下光靠“离 / 在混部”就可实现 IT 总有用成本(TCO)的 50% 的节省。


另一方面,企业数据平台在不同的发展时期,集群所规划的存储算力比不同,导致服务器选型困难,而从存算分离的的角度,计算集群和存储集群分开扩容,也可以更加合理地控制 IT 成本。


此外,Spark on Kubernetes 通过 Pod 分配 Executor 模式,执行线程数(spark.executor.cores)和 Pod 的 request cpu 是分离的,可以更加细粒度的在作业级别对控制,来提升计算资源的使用效率。在我们网易的实际实践中,在不影响整体计算性能的条件下,Spark on Kubernetes 作业整体上 cpu 可以达到超 200% 的超售比。


当然,Spark on Kubernetes 在动态资源分配(Dynamic Resource Allocation)这个特性上的缺失或者不完善,可能会造成 Spark 占着资源不使用的情况。由于这个特性直接依赖外置的 Shuffle Service 服务来实现,这时候可能就需要自行去搭建 Remote/External Shuffle Service 服务。



在 Spark on Kubernetes 场景下,基于 RSS/ESS 可实现临时存储与计算过程相互解耦。第一,消除本地存储依赖,使得计算节点可在异构节点上动态伸缩,在面对复杂物理或者虚拟环境时更加灵活的动态扩展。第二,离散式本地存储优化为集中式服务化存储,存储容量所有计算节点共享,提高存储资源利用率。第三,降低磁盘故障率,动态地减少标记为不可用计算节点,提升计算集群整体资源利用率。最后,转移临时存储的血缘关系,使其不再由 Executor Pod 计算节点维护,使得闲置 Executor Pod 可以被及时地释放回资源池,提升集群资源利用率。

其他对比



总结


Spark on Kubernetes 自 2018 年初随 2.3.0 版本发布以来,不知不觉已经有四个年头了,而到现在的 3.2 版本,也已经历经 5 个大版本了。在社区和用户的不断打磨下已经成为了非常成熟的特性了。


随着 Apache Spark 开源生态不断发展,如 Apache Kyuubi 等,无论是哪个调度框架,易用性上都得到大幅提升。


IT 基础设施的总拥有成本(Total Cost of Ownership, TCO) 逐年上涨,一直是困扰很多企业的难题。Spark + Kubernetes 的组合的灵活性和超高性价比,给了我们更多想象的空间。


作者介绍:


Kent Yao,网易数帆技术专家,Apache Kyuubi(Incubating) PPMC,Apache Spark Committer


参考资料


[1] https://issues.apache.org/jira/browse/SPARK-18278


[2] https://issues.apache.org/jira/browse/SPARK-33005


[3] https://www.youtube.com/watch?v=xX2z8ndp_zg


[4] https://www.youtube.com/watch?v=hcGdW_6xTKo


[5] https://ieeexplore.ieee.org/document/9384578


[6] https://github.com/GoogleCloudPlatform/spark-on-k8s-operator


[7] https://github.com/apache/incubator-kyuubi


[8] https://aws.amazon.com/cn/blogs/containers/optimizing-spark-performance-on-kubernetes/

2022-03-10 16:367045

评论 1 条评论

发布
用户头像
`kubectl apply -f <YAML file path>` -f 后面的被识别成html tag了
2022-03-11 13:42
回复
没有更多了
发现更多内容

申请 GPT4.0Key!含详细步骤

石云升

AIGC ChatGPT GPT-4

Nautilus Chain NautDID NFT 即将上线主网,Layer3 数字身份时代开启

大瞿科技

人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法| 社区征文

汀丶人工智能

LoRa NLP 大模型 LLM模型 年中技术盘点 Freeze微调

来自 BOSS 的需求,我们该怎么处理?

Bonaparte

产品 产品需求 BOSS需求 需求处理

PyTorch: 权值初始化

timerring

PyTorch

Open AI爆火,4个中国版ChatGPT扎堆爆发 | 社区征文

我搬去水星了

年中技术盘点

可爱小猫猫【InsCode Stable Diffusion美图活动一期】

繁依Fanyi

Ins风韩国美少女【InsCode Stable Diffusion美图活动一期】

繁依Fanyi

C语言宏定义中的#和##

芯动大师

CnosDB x LangChain: 聊着天来查询时序数据库

CnosDB

开源 时序数据库 CnosDB

2023-07-16:讲一讲Kafka与RocketMQ中零拷贝技术的运用?

福大大架构师每日一题

福大大架构师每日一题

GitHub Copilot深度剖析:一个AI产品的性能提升、成本控制与效果评估

无人之路

ChatGPT Copilot

WAIC2023丨AI图像内容安全“黑科技”如何助力科技向善发展?

陈橘又青

Visual Studio Code错误:Cannot build and debug because the active file is not a C or C++ source file

codists

Visual Studio Code

一个普通程序员如何看待chatgpt大火 | 社区征文

不觉心动

年中技术盘点

明代元素时装小姐姐【InsCode Stable Diffusion美图活动一期】

繁依Fanyi

领导和团队的自主权——《敏捷实战-破解敏捷落地的60个难题》读后感(二)

Bruce Talk

敏捷开发 Agile

chatgpt和文心一言哪个更厉害 | 社区征文

张三丰无极

年中技术盘点

IoTOS-v1.5.3 新增 智能诊断&会话记录导出

开源物联卡管理平台-设备管理

物联网平台 IoT 开源物联网 国产开源 开源项目介绍

Antlr4如何自动解析得到AST而不是ParseTree

canonical

ANTLR 低代码 dsl antlr4

小设计,大作用——谈谈防腐层的妙用

JAVA旭阳

Java

ClickHouse 学习分享

冰心的小屋

OLAP Clickhouse

3D渲染速度慢,花重金买显卡还是用云渲染更划算

3DCAT实时渲染

实时渲染云

学校招生报名小程序开发笔记(一)

CC同学

从0到1:跑团小程序开发心得笔记

CC同学

人工智能自然语言处理:N-gram和TF-IDF模型详解

汀丶人工智能

人工智能 自然语言处理 nlp tf-idf N-gram

Spark on Kubernetes 与 Spark on Yarn 不完全对比分析_语言 & 开发_Kent Yao_InfoQ精选文章