QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

Apache CarbonData 里程碑式版本 1.3 发布

  • 2018-02-08
  • 本文字数:3343 字

    阅读完需:约 11 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

CarbonData 是一种新的高性能数据存储格式,已在 20+ 企业生产环境上部署和使应用,企业数据规模达到万亿。针对当前大数据领域分析场景需求各异而导致的存储冗余问题,业务驱动下的数据分析灵活性要求越来越高,CarbonData 提供了一种新的融合数据存储方案,以一份数据同时支持多种应用场景,并通过多级索引、字典编码、预聚合、动态 Partition、准实时数据查询、列存等特性提升了 IO 扫描和计算性能,实现百亿数据级秒级响应。

我们来看下,CarbonData 1.3.0 有哪些重大特性:

1. 支持与 Spark 2.2.1 集成

CarbonData 1.3.0 支持与最新稳定的 Spark 2.2.1 版本集成。

2. 支持预聚合表特性

在 1.3.0 中,CarbonData 的预聚合特性,与传统 BI 系统的 CUBE 方案最大区别是,用户不需要改任何 SQL 语句,既可加速 group by 的统计性能,又可查询明细数据,做到一份数据满足多种应用场景。具体的用法如下:

a) 创建主表:

复制代码
CREATE TABLE sales (
order_time TIMESTAMP,
user_id STRING,
sex STRING,
country STRING,
quantity INT,
price BIGINT)
STORED BY 'carbondata'

b) 基于上面主表 sales 创建预聚合表:

复制代码
CREATE DATAMAP agg_sales
ON TABLE sales
USING "preaggregate"
AS
SELECT country, sex, sum(quantity), avg(price)
FROM sales
GROUP BY country, sex

c) 用户不需要改 SQL 语句,基于主表 sales 的查询语句如命中预聚合表 agg_sales,可以显著提升查询性能:

复制代码
SELECT country, sex, sum(quantity), avg(price) FROM sales GROUP BY country, sex;// 命中,完全和聚合表一样
SELECT sex, sum(quantity) FROM sales GROUP BY sex;// 命中,聚合表的部分查询
SELECT country, avg(price) FROM sales GROUP BY country;// 命中,聚合表的部分查询
SELECT country, sum(price) FROM sales GROUP BY country;// 命中,因为聚合表里 avg(price) 是通过 sum(price)/count(price) 产生,所以 sum(price) 也命中
SELECT sex, avg(quantity) FROM sales GROUP BY sex; // 没命中,需要创建新的预聚合表
SELECT max(price), country FROM sales GROUP BY country;// 没命中,需要创建新的预聚合表
SELECT user_id, country, sex, sum(quantity), avg(price) FROM sales GROUP BY user_id, country, sex; // 没命中,需要创建新的预聚合表

d) 在 3.0 版本中,支持的预聚合表达式有:SUM、AVG、MAX、MIN、COUNT

e) 实测性能可提升 10+ 倍以上,大家可以参考例子,把测试数据调到 1 亿规模以上,跑下这个例子:/apache/carbondata/examples/PreAggregateTableExample.scala

3. 支持时间维度的预聚合特性,并支持自动上卷

此特性为 Alpha 特性,当前时间粒度支持设置为 1,比如:支持按 1 天聚合,暂不支持指定 3 天,5 天的粒度进行聚合,下个版本将支持。支持自动上卷(Year,Month,Day,Hour,Minute),具体用法如下:

a) 创建主表:

复制代码
CREATE TABLE sales (
order_time TIMESTAMP,
user_id STRING,
sex STRING,
country STRING,
quantity INT,
price BIGINT)
STORED BY 'carbondata'

b) 分别创建 Year、Month、Day、Hour、Minute 粒度的聚合表:

复制代码
CREATE DATAMAP agg_year
ON TABLE sales
USING "timeseries"
DMPROPERTIES (
'event_time’=’order_time’,
'year_granualrity’=’1’,
) AS
SELECT order_time, country, sex, sum(quantity), max(quantity), count(user_id), sum(price),
avg(price) FROM sales GROUP BY order_time, country, sex
CREATE DATAMAP agg_month
ON TABLE sales
USING "timeseries"
DMPROPERTIES (
'event_time’=’order_time’,
'month_granualrity’=’1’,
) AS
SELECT order_time, country, sex, sum(quantity), max(quantity), count(user_id), sum(price),
avg(price) FROM sales GROUP BY order_time, country, sex
CREATE DATAMAP agg_day
ON TABLE sales
USING "timeseries"
DMPROPERTIES (
'event_time’=’order_time’,
'day_granualrity’=’1’, // 当前粒度只支持设置为 1,
) AS
SELECT order_time, country, sex, sum(quantity), max(quantity), count(user_id), sum(price),
avg(price) FROM sales GROUP BY order_time, country, sex
CREATE DATAMAP agg_sales_hour
ON TABLE sales
USING "timeseries"
DMPROPERTIES (
'event_time’=’order_time’,
'hour_granualrity’=’1’,
) AS
SELECT order_time, country, sex, sum(quantity), max(quantity), count(user_id), sum(price),
avg(price) FROM sales GROUP BY order_time, country, sex
CREATE DATAMAP agg_minute
ON TABLE sales
USING "timeseries"
DMPROPERTIES (
'event_time’=’order_time’,
'minute_granualrity’=’1’,
) AS
SELECT order_time, country, sex, sum(quantity), max(quantity), count(user_id), sum(price),
avg(price) FROM sales GROUP BY order_time, country, sex

c) 用户可不用创建所有时间粒度的聚合表,系统支持自动 roll-up 上卷,如:已创建了 Day 粒度的聚合表,当查询 Year、Month 粒度的 group by 聚合时,系统会基于已聚合好的 Day 粒度值推算出 Year、Month 粒度的聚合值:

复制代码
CREATE DATAMAP agg_day
ON TABLE sales
USING "timeseries"
DMPROPERTIES (
'event_time’=’order_time’,
'day_granualrity’=’1’,
) AS
SELECT order_time, country, sex, sum(quantity), max(quantity), count(user_id), sum(price),
avg(price) FROM sales GROUP BY order_time, country, sex

(Year、Month 粒度的聚合查询,可用上面创建的 agg_day 上卷)

复制代码
SELECT timeseries(order_time, ‘month’), sum(quantity) FROM sales group by timeseries(order_time,
’month’)
SELECT timeseries(order_time, ‘year’), sum(quantity) FROM sales group by timeseries(order_time,
’year’)

4. 支持实时入库,准实时查询

在 1.3.0 中,支持通过 Structured Streaming 实时导入数据到 CarbonData 表,并立即可查询这些 fresh 数据。

a) 实时获取数据:

复制代码
val readSocketDF = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9099)
.load()

b) 写数据到 CarbonData 表

复制代码
qry = readSocketDF.writeStream
.format("carbondata")
.trigger(ProcessingTime("5 seconds"))
.option("checkpointLocation", tablePath.getStreamingCheckpointDir)
.option("dbName", "default")
.option("tableName", "carbon_table")
.start()

(具体可参考例子 /apache/carbondata/examples/CarbonStructuredStreamingExample.scala)

5. 支持标准的 Partition 特性:

此 Partition 和 Hive 和 Spark partition 一样,用户可以按字段值建立 partition 分区,查询时可指定具体分区数据进行快速查询;与 SORT_COLUMNS 组合应用,可以建立多级排序,满足任意维度组合的过滤查询,做到一份数据满足多种应用场景。如:创建下面表,设置 productDate 作为 partition 字段,数据按天进行分区;再通过 SORT_COLUMNS 建立多维 MDK 索引。这样可以按照 productDate,productName, storeProvince, storeCity 任意过滤组合快速查询数据。

复制代码
CREATE TABLE IF NOT EXISTS productSalesTable (
productName STRING,
storeProvince STRING,
storeCity STRING,
saleQuantity INT,
revenue INT)
PARTITIONED BY (productDate DATE)
STORED BY 'carbondata'
TBLPROPERTIES(‘SORT_COLUMNS’ = ‘productName, storeProvince, storeCity’)

6. 支持 CREATE TABLE AS SELECT 语法

CREATE TABLE carbon_table STORED BY 'carbondata' AS SELECT * FROM parquet_table7. 支持指定导入的数据进行查询

CarbonData 每批次导入的数据,会放到一个 segment 下,在 1.3.0 里用户可以指定 segment 数据进行查询,即:用户可以指定数据批次按需查询。

a) 查询 Segment ID 列表

SHOW SEGMENTS FOR TABLE <databasename>.<table_name>b) 设置 Segment ID

SET carbon.input.segments.<databasename>.<table_name> = <list of segment IDs>(具体可参考例子:/apache/carbondata/examples/QuerySegmentExample.scala)

8. Apache CarbonData**** 官网:apache.org

1.3.0下载地址

2018-02-08 18:004672

评论

发布
暂无评论
发现更多内容

鸿蒙开发实战:轻松配置多环境目录,实现高效应用部署

王二蛋和他的张大花

鸿蒙

Robotaxi三国杀

脑洞汽车

AI

Pytest 并行与分布式运行测试用例的实现与优化

测吧(北京)科技有限公司

测试

从消息中间件架构发展趋势,探讨物联网平台如何支持亿级设备推送?

华为云开发者联盟

IoT Apache Pulsar 消息中间件 华为云IoTDA

spring-关于组件的注入及获取流程

EquatorCoco

Java spring 后端

利用外部数据源 JSON 管理测试:灵活的数据驱动测试方法

测吧(北京)科技有限公司

测试

61支队伍入围!用友第六届企业数智化应用开发大赛决赛名单公布

新消费日报

鸿蒙开发实战:深度解析网络管理技巧与实战应用

王二蛋和他的张大花

鸿蒙

推理王者o1到底怎么落地?

脑极体

AI

鸿蒙开发实战:灵活定制编译选项,打造高效应用

王二蛋和他的张大花

鸿蒙

为什么真全闪分布式存储离不开 RoCE/RDMA 流控技术?

XSKY星辰天合

#分布式存储 流控技术

和鲸社区地球科学轻科研交流局:在这个卷来卷去的时代,我们都想要找到一些答案

ModelWhale

数据科学 气象 地球科学 DDE 深时数字地球 大气

90后斩获多家名企offer的小哥哥,做对了什么?

霍格沃兹测试开发学社

TikTok矩阵怎么玩?

Ogcloud

云手机 tiktok云手机 tiktok运营 TikTok养号 tiktok矩阵

全面升级的“新清影”,给AI生成视频带来了哪些新玩法?

Alter

全国数据标准化技术委员会成立,企业该对数据”下狠手”了

用友BIP

鸿蒙开发实战:智能日志定位与高效调试技巧

王二蛋和他的张大花

鸿蒙

C# 单例模式的多种实现

不在线第一只蜗牛

JavaScript C#

企业应推动数据全生命周期运营,充分释放数据价值

用友BIP

探索微店API接口:如何高效获取商品详情数据

代码忍者

API 接口 pinduoduo API

全链路压力测试:确保系统在高负载下的稳定性与响应能力

测吧(北京)科技有限公司

测试

深入理解 Fixture 作为参数使用的技巧:提升测试代码的灵活性和复用性

测吧(北京)科技有限公司

测试

载誉而归!天翼云荣获第23届中国IT用户满意度大会多项殊荣

天翼云开发者社区

云计算 IT 云服务

机器学习与AI|如何利用数据科学优化库存周转率?

Altair RapidMiner

人工智能 数据分析 altair RapidMiner

Pytest-ordering:自定义 Pytest 测试用例执行顺序的指南

测吧(北京)科技有限公司

测试

Pytest 内置插件 Hook 体系:深入了解与实践

测吧(北京)科技有限公司

测试

利用外部数据源 CSV 管理测试:轻量化数据驱动测试方案

测吧(北京)科技有限公司

测试

深入理解 fixture 的作用范围:优化测试环境的管理

测吧(北京)科技有限公司

测试

深入理解 yield 用法:从生成器到高级测试场景的应用

测吧(北京)科技有限公司

测试

重磅发布 | 末等调整和不胜任退出数智化解决方案

用友BIP

别再被多线程搞晕了!一篇文章轻松搞懂 Linux 多线程同步!

快乐非自愿限量之名

Linux 多线程

Apache CarbonData里程碑式版本1.3发布_开源_陈亮_InfoQ精选文章