写点什么

Nextdoor 分布式任务队列系统的演进

  • 2014-08-21
  • 本文字数:1637 字

    阅读完需:约 5 分钟

近日,私密社交网络 Nextdoor 在其官方博客发表了一篇文章,介绍其分布式任务队列系统的演进过程。该系统每天要处理数以百万计的异步任务,包括向数以百万计的邻居发送内容通知、创建搜索索引、以及其它应该从交互式Web 和移动应用程序解耦的耗时的处理过程。它由两部分组成:消息代理(队列)和一组任务工作进程。像其它许多系统一样,他们使用 RabbitMQ 作为消息代理,使用 Celery 作为任务工作进程。在公司规模较小的时候,这些开源项目提供了很大的帮助。但随着用户数的增多,不久前,他们在 Celery 的稳定性方面遇到了问题。即使得到了 Celery 创建者 Ask Solem 本人的支持,但他们仍然会遇到一些问题。最终,他们决定用他们自己开发的项目 Taskworker 替换 Celery。同时,为了减少运维开销,他们用 Amazon SQS 替换了 RabbitMQ。他们的理由是,Amazon SQS 容易理解,具有高可扩展性,而且完全由 Amazon 管理。

文章首先列出了他们在使用 Celery 时面临的三个主要问题:

  1. Celery 工作进程在他们系统的现有规模下不稳定。工作进程经常莫名其妙地宕掉,而且由于其代码库很复杂,很难进行故障排除。
  2. Celery 工作进程无法有效利用系统的计算资源。由于 Celery 不支持优先级队列,所以许多工作进程节点要么未充分利用,要么出现了过载。
  3. Celery 工作进程处理任务的延时经常非常高。

由于上述问题的存在,他们为 Taskworker 设定了三个目标:

  1. 简单:故障排除要简单。
  2. 高效:计算资源的利用要尽可能的高效。
  3. 可扩展:系统应该是完全分布式的,并可横向扩展。

文章接下来详细介绍了 Taskworker 设计及应用到生产环境过程中的一些关键点。

设计决策

基于上述三个目标,他们提出了一种很简单的设计,用 Python 伪代码表示(不包括错误处理和重试逻辑)如下:

复制代码
def run_taskworker():
while True:
queue = select_queue()
tasks = queue.get_tasks()
for task in tasks:
task.run()

在底层,他们会在每个工作进程节点上运行一组 Taskworker 进程,每个进程都运行上面所示的循环。所有进程都是完全独立的。select_queue()函数根据队列的优先级决定从哪个队列获取任务。它既要能优先处理高优先级队列的任务,又要能避免低优先级队列挨饿。

在通过模拟生产负载进行了十多次基准测试后,他们最终选用了一个彩票算法的变体,如下所示:

复制代码
def select_queue():
candidate_queues = get_all_queues()
while not candidate_queues.empty():
queue = run_lottery(candidate_queues)
if queue.empty():
candidate_queues.remove(queue)
else:
return queue
return run_lottery(get_all_queues())

文中还提到,他们要管理十几个或更多不同种类的队列,每个队列包含的任务具有相同的优先级和相似的运行时间。他们在队列层面进行配置设定,包括优先级、SQS 可见性超时以及一次任务处理循环获取的任务数。另外,SQS 在向工作进程发送任务时遵循“至少一次”的语义,这就需要任务必须是幂等的。

应用到生产环境

在这一部分,文章介绍了以下三个方面:

  1. 发布过程:为了保持兼容,SQS 队列和 Taskworker 的版本总是相同。
  2. 能力计划:他们使用 Taskworker 模拟生产负载,以决定在一天中的不同时段如何设置工作进程的能力。
  3. 任务迁移:他们基于每个任务增加了自己开发的开关功能,用于决定是将任务发布到 RabbitMQ 还是 SQS。当开始迁移的时候,他们只需要简单地、一个任务接一个任务地开启开关功能。

结论

截止博文发表时,Taskworker 已经在生产环境中运行了三个多月。他们没有再遇到稳定性问题。在运行相同数量的工作进程节点的情况下, Celery 系统队列中的任务忙时平均延时是 Taskworker 系统的 40 倍。

文章最后指出,Taskworker 还有许多可以改进的地方,而且正在准备开源。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-08-21 08:293093
用户头像

发布了 256 篇内容, 共 100.0 次阅读, 收获喜欢 12 次。

关注

评论

发布
暂无评论
发现更多内容

朱嘉明:区块链成为经济转型、形成产业新业态的技术手段

CECBC

我想模糊删除redis key🤔

山中兰花草

Java lua redis 面试 批量任务

CAP原理

jason

Flask-Restful 中 fileds.DateTime 不支持 strftime 格式

Leetao

Python flask web开发 Python框架 flask-restful

分布式事务解决方案Seata源码解析

Java 分布式 分布式事务

Python的四种作用域及调用顺序

BigYoung

Python 局部作用域 全局作用域

可读代码编写炸鸡六 - 控制流尽量向前奔涌就好,不要分心

多选参数

代码 代码优化 代码规范 可读代码编写 可读代码

LeetCode题解:141. 环形链表,JavaScript HashMap,详细注释

Lee Chen

大前端 LeetCode

毕业半年的憨憨,将公司的代码上传到GitHub上了

诸葛小猿

GitHub 代码上传

企业架构框架之TOGAF

冯文辉

企业架构

寻找握剑的手,青睐懂行的人

脑极体

MQTT的搭建、测试、应用及小程序的集成!

诸葛小猿

物联网 IoT mqtt broker

解决问题 1474 个,Flink 1.11 究竟有哪些易用性上的改善?

Apache Flink

flink

防止数据重复提交的6种方法(超简单)!

王磊

Java

单例模式的几种写法你用的哪种?

Java小咖秀

Java 设计模式 23种设计模式

以中立性的立场看Severless的目标和流派

韩超

云原生 serverles

聊聊Dubbo(二):简单入门

猿灯塔

Week 06 命题作业

Jeremy

Week 06学习总结

Jeremy

区块链加持的家用摄像头能拯救你的隐私吗?

CECBC

平价又好用的学习电脑小轩PRO来啦,为孩子创造超强学习体验

最新动态

可读代码编写炸鸡七 - 表达式太长就拆

多选参数

代码质量 代码组织 代码规范 可读代码编写 可读代码

数十家技术社区联名推荐的GeekOnline来了!

Geek_116789

《北京市政务服务领域区块链应用创新蓝皮书(第一版)》正式发布

CECBC

第六周作业

腾志文(清样)

计算机揭秘之:网络分类和性能分析

程序那些事

TCP 计算机网络 网络协议 计算机基础 udp

第六周总结

腾志文(清样)

图解:如何实现最小生成树

淡蓝色

Java 数据结构 算法

【API进阶之路】老板给我涨薪30%!如何通过SDK接口搞定千万级流量直播

华为云开发者联盟

运维 服务器 直播 云服务 华为云

如何进行需求梳理及埋点方案设计

易观大数据

林左鸣 史瑞华:人类应鼎力进行的探索

CECBC

Nextdoor分布式任务队列系统的演进_语言 & 开发_马德奎_InfoQ精选文章