收录了 系统搜索引擎 频道下的 50 篇内容
从信息获取的角度来看,搜索和推荐是用户获取信息的两种主要手段。无论在互联网上,还是在线下的场景里,搜索和推荐这两种方式都大量并存,那么推荐系统和搜索引擎这两个系统到底有什么关系?区别和相似的地方有哪些?本文作者有幸同时具有搜索引擎和推荐系统一线的技术产品开发经验,结合自己的实践经验来为大家阐述两者之间的关系、分享自己的体会。
2014年10月16日,为期2天的阿里云开发者大会在杭州拉开帷幕。从2011年迄今,阿里云开发者大会已经连续举办了三届,已然成为了开发者们分享心得经验的狂欢Party,也是中国云计算领域一年一度最大规模的开发者盛会。
苏宁易购如何将Solr应用到其商品评价系统中?
本文将用几张图,来带你看懂今日头条的推荐系统。
本文介绍了闲鱼搜索引擎系统的稳定性保障方案是如何设计的。
搜索是很多用户在天猫购物时的第一入口,搜索结果会根据销量、库存、人气对商品进行排序,而商品的显示顺序往往会决定用户的选择,所以保证搜索结果的实时性和准确性非常重要。在电商系统中,特别是在“双十一”这样的高并发场景下,如何准确展示搜索结果显得尤为重要。在今年的“双十一”活动中,InfoQ有幸采访到了阿里巴巴集团搜索引擎的三位负责人仁基、桂南和悾傅,与他们共同探讨了搜索引擎背后的细节。以下内容根据本次采访整理而成。
本篇文章主要是对搜索引擎分布式的设计和落地做了总结,主要的几个重要部分是,如何设计一套有状态的分布式系统,其中最主要的核心部分是如何对各个节点的状态变化做处理,以及合理的对数据进行分片和处理。
从推荐到搜索,头条搜索建立了一套独有的搜索技术架构。
QCon大会预热采访。360搜索郝一昕。
Max Grigorev最近写了一篇文章,题目是《What every software engineer should know about search》,这篇文章里指出了现在一些软件工程师的问题,他们认为开发一个搜索引擎功能就是搭建一个ElasticSearch集群,而没有深究背后的技术,以及技术发展趋势。Max认为,除了搜索引擎自身的搜索问题解决、人类使用方式等之外,也需要解决索引、分词、权限控制、国际化等等的技术点,看了他的文章,勾起了我多年前的想法。 很多年前,我曾经想过自己实现一个搜索引擎,作为自己的研究生论文课题,后来琢磨半天没有想出新的技术突破点(相较于已发表的文章),所以切换到了大数据相关的技术点。当时没有写出来,心中有点小遗憾,毕竟凭借搜索引擎崛起的谷歌是我内心渴望的公司。今天我就想结合自己的一些积累,聊聊作为一名软件工程师,您需要了解的搜索引擎知识。
火山引擎大数据研发治理套件 DataLeap的Data Catalog系统通过汇总和组织各种元数据,解决了数据生产者梳理数据、数据消费者找数和理解数的业务场景,其中搜索是Data Catalog的主要功能之一。
Havenask(内部代号 HA3),是过去十多年阿里在电商领域积累下来的核心竞争力产品。
火山引擎DataLeap的Data Catalog系统通过汇总和组织各种元数据,解决了数据生产者梳理数据、数据消费者找数和理解数的业务场景,其中搜索是Data Catalog的主要功能之一。本文详细介绍了火山引擎DataLeap的Catalog系统搜索实践:功能的设计与实现。
我们正处于信息爆炸式增长的时代,如何在信息海洋里迅速定位到目标信息成为人们关心的问题。搜索引擎作为互联网和应用的关键入口,向来是兵家必争之地。
大家期望出现一个更好的搜索引擎,AI时代的引擎。
DataLeap是火山引擎数智平台VeDI旗下的大数据研发治理套件产品,帮助用户快速完成数据集成、开发、运维、治理、资产、安全等全套数据中台建设,降低工作成本和数据维护成本、挖掘数据价值、为企业决策提供数据支撑。
火山引擎DataLeap的Catalog搜索系统使用了开源的搜索引擎Elasticsearch进行基础的文档检索(Recall阶段),因此各种资产元数据会被存放到Elasticsearch中。整个系统包括4个主要的数据流程:
Neeva 更快、更简单且无广告。但做出比谷歌更好的东西,却并不足以击败谷歌。
Learning to rank主要分为数据收集,离线训练和在线预测三个部分。搜索系统是一个Data-driven system,因此火山引擎DataLeap的Catalog系统设计之初就需要考虑数据收集。收集的数据可以用来评估和提升搜索的效果。数据收集和在线预测前面已有介绍,不再赘述,
ChatGPT是一项很棒的技术,它很有可能会重新定义我们创建以及与数字信息交互的方式。它可以有许多有趣的应用,包括在线搜索。