聚焦大模型浪潮下软件工程的创新洞见与实践 |QCon主题演讲大咖来袭 了解详情
写点什么

深度学习架构

收录了 深度学习架构 频道下的 50 篇内容

腾讯广告高可用的深度学习技术架构(上)
腾讯广告高可用的深度学习技术架构(上)

本次分享介绍腾讯的由特征工程、训练平台、线上 Serving 组成的深度学习技术架构。

英伟达重磅开源Kaolin:基于PyTorch的3D深度学习加速工具
英伟达重磅开源 Kaolin:基于 PyTorch 的 3D 深度学习加速工具

Kaolin提供了可用于三维深度学习系统的可微三维模块。

Facebook 人工智能负责人 Yann LeCun 谈深度学习的局限性

6月7日到12日,世界顶级的计算机视觉会议CVPR在美国波士顿召开,会议邀请了Facebook人工智能实验室主任、NYU数据科学中心创始人、深度学习界的泰斗Yann LeCun做了题为“What's Wrong with Deep Learning?”的主题报告。

云深度学习平台架构与实践的必经之路

Google、微软、亚马逊都推出了自己的云深度学习平台,本文基于第四范式先知平台的架构和实践经验,对云深度学习平台的定义以及如何打造一个低门槛、高可用的云深度学习平台进行介绍。

工业级深度学习应用进入瓶颈期,系统架构会成下一个突破口吗?
工业级深度学习应用进入瓶颈期,系统架构会成下一个突破口吗?

深度学习之后,我们还应该做一些其他的尝试。

AI 规模化应用时代的深度学习平台构建 | 《架构师成长计划》
AI 规模化应用时代的深度学习平台构建 | 《架构师成长计划》

随着AI规模化应用时代的到来,深度学习产业应用面临着 “三大”“三多”挑战。面对产业应用的现实困境,该如何构建一个综合的产业级的深度学习平台,帮助企业降低AI技术落地的门槛?

Amazon 宣布将 MXNet 作为 AWS 的深度学习框架

Amazon公司首席技术官Werner Vogels近期在博客上透露了Amazon Web Services(AWS)的深度学习框架首选为MXNet。这意味着Amazon不像其云服务的竞争对手Google、Microsoft那样自己研发深度学习框架,而是履行前期承诺去支持开源的MXNet项目。这对于MXNet的进一步发展是重大利好消息,但是是否会取得市场上的成功仍需观察。

被高估的2018:深度学习发展并没有想象的快
被高估的 2018:深度学习发展并没有想象的快

回顾 2018 年,对于年初做出的预测,现在看来,很多都做过了头。

VTA:一个开放、高度可定制化的深度学习加速器平台

Versatile Tensor Accelerator(VTA,发音为vita)是一种开放、通用、可定制的深度学习加速器。VTA是一种可编程加速器,提供了RISC风格的编程抽象来描述张量级的操作。VTA的设计体现了主流深度学习加速器最突出和最常见的一些特征,比如张量操作、DMA加载/存储和显式的计算/内存调节。

DeepMind的AI能指导人类的直觉吗?
DeepMind 的 AI 能指导人类的直觉吗?

DeepMind 研究人员最近发表了一篇论文,认为深度学习能够帮助发现被人类科学家忽视的数学关系。

Hinton、Yann LeCun、李飞飞谈深度学习十年:AI没有走入死胡同,“革命”仍如火如荼
Hinton、Yann LeCun、李飞飞谈深度学习十年:AI 没有走入死胡同,“革命”仍如火如荼

2022年,当我们回望这生机勃勃、万物竞发的AI黄金十年,新的问题涌上心头:我们可以从这十年来的深度学习发展中总结出什么?这一颠覆世界的革命性技术,未来又将引何去何从?

H2O.ai 首席架构师谈深度学习的影响和发展障碍

H2O是一个分布式可伸缩性开源机器学习平台,领先的为分布式计算集群设计的开源内存片内机器学习平台,附带开源Java代码、具有公开可用可伸缩的机器学习,整合了日常工具如R,Python,Hadoop和spark等等。

Watson 首席架构师专访:IBM 深度学习平台 Fabric for Deep Learning

InfoQ就IBM深度学习平台FfDL采访了Watson首席架构师Ruchir Puri。

计算机视觉奠基人:深度学习作用有限,需要找到新突破口
计算机视觉奠基人:深度学习作用有限,需要找到新突破口

最近Yuille指出,计算机视觉的发展面临瓶颈,不破则不立,但深度学习这时候发挥的作用实际上是有限的。那么在他看来,计算机视觉的突破口在哪里呢?

对话机器学习大神 Yoshua Bengio(上)

作为机器学习社区的活跃者,Yoshua Bengio教授在美国东部时间2月27日下午一点到两点,在著名社区Reddit的机器学习板块参加了“Ask Me AnyThing”活动,Yoshua回答了机器学习爱好者许多问题,干货频频。故作此整理,供远在地球另一面的国内人工智能和机器学习爱好者学习讨论,所有问答的先后顺序由Reddit用户投票决定。

图深度学习:成果、挑战与未来
图深度学习:成果、挑战与未来

本文是系列文章的第一篇,作者将讨论图深度学习领域的发展和未来趋势。

刚刚,ACM宣布三位深度学习之父共同获得2018年图灵奖!
刚刚,ACM 宣布三位深度学习之父共同获得 2018 年图灵奖!

今天,ACM(计算机协会)宣布把2018年度ACM A.M.图灵奖颁给了Yoshua Bengio、Geoffrey Hinton和Yann LeCun,以表彰他们提出的概念和工作使得深度学习神经网络有了重大突破,如今神经网络已经成为计算领域的重要组成部分。

松散耦合深度学习Serving的优势和部署案例
松散耦合深度学习 Serving 的优势和部署案例

相比使用API框架的方法,松散耦合架构可以是更好的选项。在服务深度网络时,它们带来了高度可控性、简单的适应性、透明的可观察性和更好的成本效益。

结合深度学习网络 (GAN 和 Siamese) 生成逼真的高品质图像
结合深度学习网络 (GAN 和 Siamese) 生成逼真的高品质图像

由于深度学习依靠用于训练它的数据的数量和质量

特邀技术专家与心理学家和你一起聊成长 | ArchSummit
特邀技术专家与心理学家和你一起聊成长 | ArchSummit

你我都在焦虑,还可以好好地工作和生活吗? 年12月之后,疫情给大家生活造成了很大的影响。每日出行必须注意“健康码”天数,如果不够需要打个“血包”;每次出差都需要担心能否回来,时刻盯着将康宝“弹窗”情况。

深度学习架构专题_资料-InfoQ中文网