限时领|《AI 百问百答》专栏课+实体书(包邮)! 了解详情
写点什么

Meta 版 ChatGPT 惨遭“开源”?最新大模型 LLaMA 被泄露,已在 GitHub 收获 7k+ 星

  • 2023-03-06
    北京
  • 本文字数:2942 字

    阅读完需:约 10 分钟

Meta版ChatGPT惨遭“开源”?最新大模型LLaMA被泄露,已在GitHub收获7k+星

Meta 的 LLaMA 代码已经和越来越多的开发者见面了,ChatGPT 正式开源还会远吗?

Meta 全新大语言模型 LLaMA 正通过种子公开发放


2 月 24 日,Meta 公司发布了新的大模型系列 —— LLaMA(Large Language Model Meta AI)。Meta 宣称,LLaMA 规模仅为竞争对手 ChatGPT 的“十分之一”,但性能却优于 OpenAI 的 GPT-3 模型。


近日,国外匿名论坛 4chan 泄露了 LLaMA 成品库,并且种子文件被合并到了 Meta Research 的 GitHub 上,同时一些项目维护者给予了批准,目前该项目在 GitHub 已收获 7k+ 个星。



GitHub 链接:


https://github.com/facebookresearch/llama/pull/73/files


对此,网友分成了两个派系:一方认为这次泄露事件是 Meta 方有意为之,另一方则认为只是单纯地被泄露。


网友 yunwal 表示:“Facebook 几乎肯定知道会发生泄密事件。我的猜测是保持模型“受控”是比其他任何事情都更重要的法律保护,以在有人滥用模型的情况下保护自己免受责任。”



网友 ok123456 则猜测:“也许这是 Meta 故意泄露的,以对抗 OpenAI。一些客户认为这是一个更好的模型,它恰好击中了他们以每年 25 万美元的价格出售访问权的商业计划的核心。访问他们的服务一个月可以购买一台能够运行这种泄露模型的机器。Facebook 削弱了一个潜在的新贵竞争对手,以保持当前的大型科技卡特尔稳定。也许这有点阴谋论,但我们生活在大科技和大阴谋的时代。”



也有网友反驳上述观点:“为什么要泄露它,而不是将它与关于开放和民主化 AI 等新闻稿一起发布?”,有网友称:“这根本不是阴谋。另请参阅 IE、Android、Kubernetes……”


目前,Meta 方面暂未对此事做出回应。有 Meta 员工表示:“Meta 员工可能没有注意到或仍在思考如何做出反应,因此 PR 仍在进行中。”


事实上,无论此事是否是 Meta 有意为之,在部分网友看来,LLaMA 原本的设定就是申请之后即可下载,“被公开是迟早的事情”。


与 OpenAI 的 GPT-3 相比,Meta 在一开始就将 LLaMA 定位成一个“开源的研究工具”,该模型所使用的是各类公开可用的数据集(例如 Common Crawl、维基百科以及 C4)。项目组成员 Guillaume Lample 在推文中指出,“与 Chinchilla、PaLM 或者 GPT-3 不同,我们只使用公开可用的数据集,这就让我们的工作与开源兼容且可以重现。而大多数现有模型,仍依赖于非公开可用或未明确记录的数据内容。”


早在上周发布时,Meta 就曾表示,LLaMA 可以在非商业许可下提供给政府、社区和学术界的研究人员和实体工作者,正在接受研究人员的申请。此外,LLaMA 将提供底层代码供用户使用,因此用户可以自行调整模型,并将其用于与研究相关的用例。也就是说,各方贡献者也能参与进来,让这套模型变得越来越好。LLaMA 的官方博文也提到,“后续还需要更多研究,以解决大语言模型中的偏见、有害评论和捏造事实等风险。”


此次非正式开源,或将标志着这些科技巨头们最优秀的大语言模型,正以前所未有的速度进入全球千行百业中,未来将以更丰富的产品形式让用户享受到先进的 AI 技术。

超越 ChatGPT,LLaMA 强在哪里?


根据 Meta 官方发布的消息,LLaMA 是一种先进的基础语言模型,旨在协助研究人员在 AI 相关领域迅速开展工作。


据悉,LLaMA 跟 OpenAI 的 GPT-3 模型差不多,LLaMA 模型是根据世界上二十种最流行的拉丁语和西里尔字母语言文本训练而成的。论文《LLaMA:开放且高效的基础语言模型》(LLaMA:Open and Efficient Foundation Language Models)就将该模型与 GPT、Gopher、Chinchilla 及 PaLM 等同类成果做出了比较。后面这几种模型都用到了广泛的公共数据,但也引入了某些非公开可用或未记录在案的文本数据。LlaMA 则仅使用公开可用的数据集进行训练,所以虽然自身尚未开源,但该模型与开源原则完全兼容。


从某种意义上讲,LLaMA 是对 2022 年 3 月发表的 Chinchilla 模型及其论文《训练计算优化型大模型》(Training Compute-Optimal Large Models)的直接反应。通过加州大学伯克利分校、哥伦比亚大学、芝加哥大学和伊利诺伊大学在 2021 年 1 月合作进行的大规模多任务语言理解(MMLU)基准测试,这篇论文探讨了模型大小、算力预算、令牌数量、训练时间、推理延迟和性能等问题。


论文中的核心观点是,AI 训练与推理的最佳性能未必由大模型的参数量直接决定。相反,增加训练数据并缩小模型体量才是达成最佳性能的前提。这样的训练可能需要更多时间,但也会带来有趣的意外收获 —— 在推理新数据时,小模型的速度更快。为了证明这一点,Chinchilla 的创建者一年前曾建议在 2000 亿个令牌(一个令牌代表一个单词片段)上训练一套具有 100 亿参数的模型。与之对应,LLaMA 的创建者称自己的模型只有 70 亿个参数,且仍在“继续优化中”,但令牌量已经高达 1 万亿。


LLaMA 模型还分别使用 67 亿、130 亿、320 亿和 652 亿几种参数组合进行训练,其中体量较小的两种使用 1 万亿个令牌,后两种较大的使用 1.4 万亿个令牌。Meta Platforms 采取了 2048 个英伟达 Ampere A100 GPU 加速器配合 80 GB HBM2e 内存,使用 1.4 万亿个令牌对规模最大的 LLaMA-65.2B 模型进行了测试,且训练周期为 21 天(每 GPU 每秒 380 个令牌)。


这样的速度并不算快,但 Meta AI 的研究人员表示,LLaMA-13B 模型“在大多数基准测试中都优于 GPT-3,且体积仅相当于后者的 1/139。”而且重点在于,“我们相信该模型有助于推动大语言模型的大众化普及,因为它完全能够在单 GPU 上运行。而且在规模化模型层面,我们的 65B 参数模型也完全能够与 Chinchilla 或者 PaLM-540B 等顶尖大语言模型相媲美。”

与其他同类大模型的性能对比


论文中列出大量性能比较,这里我们挑出几条来感受一下。下图展示了各模型在“常识推理”任务中的零样本性能表现:



零样本意味着利用一种数据训练而成的模型,对另外一种数据类型进行处理,且无需专门针对新类别做重新训练。(这也是大语言模型的强大之处,其具备自动扩展能力。)从表中的粗体部分可以看到,650 亿参数的 LLaMA 达成或超越了除 PaLM-540B 两个实例以外的其他所有模型,而且跟冠军的表现也相当接近。GPT-3 也在其中,其 1750 亿参数的版本虽然表现不错,但准确率也没有特别明显的优势。而且需要注意,GPT-3 的 1750 亿参数相当于 LLaMA-65B 的 2.7 倍。


在另一轮有趣的比较中,Meta Platforms 展示了 LLaMA 在人文、科学、技术与数学、社会科学及其他各领域的多选测试结果。我们来看以下图表:



这里测试的是所谓 5-shot 准确率,也就是对于任何特定问题,源材料都至少对其提及 5 次,(随着每次提及,答案的确定性水平都会提高,这与人类推理的过程非常相似。这反映的是除了确切知晓之外,我们也往往能从多选题中推断出正确答案。)


下图也很重要,展示的是 LLaMA 在不同参数规模下,与 Chinchilla 模型之间的常识推理与问答基准测试差异:



如图所示,LLaMA-33B 和 LLaMA-65B 已经可以与 Chinchilla-70B 模型正面对抗,当令牌数量达到 1 万亿时甚至能够反超。


值得一提的是,在 NaturalQuestions 和 SIQA 问答测试中,这些基础模型都及不了格——准确率过低,甚至距离及格线还有一段距离。各模型在 TriviaQA 测试中的得分在 D+ 到 C- 之间,在 WinoGrande 测试中得到 C- 至 C,在 HellaSwag 测试中得到 C 至 B,在 PIQA 测试中得到 C+ 至 B-。单从成绩来看,现有大语言模型还算不上班里的“尖子生”。

2023-03-06 14:1612396

评论 1 条评论

发布
用户头像
额。
2023-03-07 08:17 · 浙江
回复
没有更多了
发现更多内容

成为网安云产品推广大使,兼职月入3w不是梦!

网安云

从计费停复机运营再谈周期性业务的优化思考

鲸品堂

运营商 计费模式 电信运营商 企业号9月PK榜

OpenHarmony应用开发之自定义弹窗

OpenHarmony开发者

OpenHarmony

阿里十年总结之软件测试的价值

阿里技术

软件测试 质量

弹性数据库连接池探活策略调研(一)——HikariCP | 京东云技术团队

京东科技开发者

数据库 HikariCP 数据库连接池 企业号9月PK榜

Seal梁胜:近水楼台先得月,IT人员应充分利用AI解决问题

SEAL安全

DevOps 技术大会 平台工程 平台工程大会 企业号9月PK榜

智能可观测性如何赋能智能汽车主机厂

博睿数据

可观测性 汽车 博睿数据

直播系统源码部署,高效文件管理与传输的FTP协议

山东布谷科技

软件开发 ftp 直播系统源码 文件传输协议 媒体文件

chatglm2-6b在P40上做LORA微调 | 京东云技术团队

京东科技开发者

人工智能 大模型 ChatGLM2-6B 企业号9月PK榜

性能调优建议与技巧

NGINX开源社区

官宣!玖章算术获评“浙江省创新型中小企业”

NineData

数据管理 玖章算术 NineData 创新型中小企业 2023年

HarmonyOS实现静态与动态数据可视化图表

HarmonyOS开发者

HarmonyOS

跨越2000公里,15岁少年的云上逐梦

华为云开发者联盟

开发者 华为云 华为云开发者联盟 企业号9月PK榜

软件测试丨建立质量保障体系,软件质量提升90%!原来是这个秘诀

测试人

程序员 质量管理 软件测试 自动化测试 质量体系

比sentry还要香的监控系统

Yestodorrow

可观测性

研发挑战的本原

iSoftBook

研发团队 研发效能管理 研发管理软件 研发管理平台 敏捷方法

KaiwuDB 受邀亮相 2023 中国国际“软博会”

KaiwuDB

KaiwuDB 软博会

企业采用生成式AI的三大挑战:可信性、隐私保护、偏见消除

技术咖和技术渣

人工智能 生成式AI

OpenSSL 3.0.0 设计(五)|遗留问题、遗留 Provider 模块、ENGINE API

铜锁开源密码库

翻译 密码学 密码学和算法 openssl 铜锁

KaiwuDB 携手 IoT 领域合作伙伴发布“1+X”工业互联网联合解决方案

KaiwuDB

IoT KaiwuDB

快速理解DDD领域驱动设计架构思想-基础篇 | 京东物流技术团队

京东科技开发者

架构 微服务 DDD 架构设计 企业号9月PK榜

恶意爬虫防护 | 京东云技术团队

京东科技开发者

爬虫 安全 爬虫软件 企业号9月PK榜 爬虫防护

Meta版ChatGPT惨遭“开源”?最新大模型LLaMA被泄露,已在GitHub收获7k+星_AI&大模型_凌敏_InfoQ精选文章