《HarmonyOS:领航者说》技术公开课来啦,大咖分享、实战解码,不容错过 了解详情
写点什么

谷歌首创基于云的 AI 自治系统,为数据中心自动降温

  • 2018-09-06
  • 本文字数:1813 字

    阅读完需:约 6 分钟

2016 年,DeepMind 联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。现在,他们将这个系统提升到一个新的水平:在数据中心运营专家的监督之下直接让 AI 系统控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

现实世界的很多最紧迫的问题变得越来越复杂,为它们寻求解决方案可能会让人不堪重负。在 DeepMind 和谷歌,谷歌认为,如果其能够将 AI 作为发现新知识的工具,那么就可以更容易得找到解决方案。

2016 年,谷歌联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。谷歌的想法很简单:即使是微小的改进也可以显著地节约能源,减少二氧化碳排放,从而有助于应对气候变化。

现在谷歌将这个系统提升到一个新的水平:谷歌不是通过人为的方式实现推荐系统,而是在数据中心运营专家的监督之下让谷歌的 AI 系统直接控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

它是怎么运作的

每隔五分钟,谷歌的 AI 系统就会从数千个传感器收集数据中心冷却系统的快照,并将其输入到谷歌的深度神经网络中,用以预测不同的潜在操作的组合将如何影响未来的能源消耗。然后,AI 系统将识别出哪些操作将会最小化能量消耗,同时又能满足安全约束。这些操作被发送回数据中心,数据中心的本地控制系统负责验证和执行它们。

这个想法源于使用 AI 推荐系统的数据中心专家的反馈。他们告诉谷歌,虽然推荐系统已经为他们提供了一些新的最佳实践——例如将冷却负载分散到更多而不是更少的设备上——但实现推荐仍然需要很多的运营工作量和监督。当然,他们想知道谷歌是否可能实现在没有人工干预的情况下实现类似的节能。

谷歌很高兴地说,答案是肯定的!

专为安全和可靠性而设计

谷歌的数据中心包含数千台服务器,用于支持谷歌搜索、Gmail 和 YouTube 等热门服务。确保它们可靠高效地运行是谷歌的关键任务。谷歌从头开始设计谷歌的 AI 代理和底层控制基础设施,并时刻考虑到安全性和可靠性问题,还使用了八种不同的机制来确保系统始终按预期运行。

谷歌已经实现的一个简单方法是预估不确定性。对于每一个潜在的操作——可能有数十亿个——谷歌的 AI 代理会计算出它们的信心指数。低信心指数的操作将不予考虑。

另一种方法是进行双层验证。谷歌将根据由数据中心运维人员定义的内部安全约束列表对 AI 计算得出的最佳操作进行审查。在指令从云端发送到物理数据中心后,本地控制系统就根据自己的约束集对指令进行验证。这种冗余检查可以确保系统保持在局部约束范围内,并且运维人员可以完全控制操作边界。

最重要的是,谷歌的数据中心运维人员始终控制着局面,可以随时选择退出 AI 控制模式。在这些情况下,控制系统将无缝地从 AI 控制转移到现场规则。

可以从下图了解谷歌开发的其他安全机制:

逐渐增长的节能

谷歌的原始推荐系统有运维人员进行审查和实现操作,而谷歌新的 AI 控制系统却直接自己实现了操作。考虑到安全性和可靠性问题,谷歌有目的地将系统的优化边界限制在较窄的操作体系中,这意味着在节能方面存在风险和回报之间的折衷。

尽管只有几个月的时间,这个系统已经实现了平均约 30%的持续节能,并有了进一步的预期改进。这是因为随着时间的推移,系统会因为数据越来越多而变得更好,如下图所示。随着技术的成熟,谷歌的优化边界也将得到扩展,从而实现更高效的节能。

这张图描绘了相对于历史基线的 AI 性能趋势。性能通过通用的工业冷却能效指标(kW/ton,每吨冷却对应的能量输入)来衡量。在 9 个月时间里,谷歌的 AI 控制系统性能从 12%的改进增加到大约 30%的改进。

谷歌的 AI 控制系统正在寻找更多新颖的管理冷却的方式,这些方法甚至让数据中心运维人员感到惊讶。谷歌数据中心运维人员 Dan Fuenffinger 说:“看到 AI 学会利用冬季条件并生成比普通水更冷的水,着实令人感到惊讶,这样可以降低冷却所需的能量。随着时间的推移,人工规则不会变得更好,但 AI 却可以“。

谷歌很高兴谷歌的 AI 控制系统能够安全可靠地运行,同时始终如一地实现节能。但是,数据中心只是个开始。从长远来看,谷歌认为有可能将这项技术应用到其他工业环境,并在更大规模的范围内应对气候变化。

查看英文原文: https://de ep mind.com/blog/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control/

感谢陈利鑫对本文的审校。

2018-09-06 19:002142
用户头像

发布了 731 篇内容, 共 469.3 次阅读, 收获喜欢 2007 次。

关注

评论

发布
暂无评论
发现更多内容

低/无代码的发展将显著改变银行开发生态

易观分析

代码 银行

高性能实战Alibaba Sentinel笔记,深度还原阿里微服务高并发方案

小柴说Java

Java 编程 架构 面试 后端

一文看懂流程挖掘是如何工作的

望繁信科技

重磅揭秘!10分钟10TB数据跨云、跨地域传输的技术实践

星汉未来

云原生 数据迁移 东数西算 星汉未来

这么好用的接口工具,请允许我油腻一次!

Liam

Java 开发 Postman API 开放api

堡垒机可以管理哪些网络资产?咨询电话多少?

行云管家

网络安全 数据安全 堡垒机

云堡垒机和软件堡垒机哪个好?区别是什么?

行云管家

网络安全 数据安全 堡垒机 云堡垒机

学术加油站|面向HTAP数据库的基准评测工具研究进展

OceanBase 数据库

延时任务-基于netty时间轮算法实现

字母哥哥

Java 架构 后端 Netty

开源流式湖仓服务 Arctic 详解:并非另一套 Table Format

网易数帆

大数据 iceberg Hudi Arctic

题目新颖,内容全面!阿里巴巴又一Java面试神册开源!

Java永远的神

Java spring 程序员 面试 JVM

完整实现-通过DelayQueue实现延时任务

字母哥哥

Java 架构 并发编程 后端

手把手地教你如何建立最好的知识管理体系

Baklib

你可能不知道,自动化元数据管理的“七宗最”?

雨果

元数据

聊聊 npm 的语义化版本(Semver)

冴羽

JavaScript 前端 npm 项目开发 semver

从一条更新SQL的执行过程窥探InnoDB之REDOLOG

京东科技开发者

MySQL 数据库

数据透视表上线!如何在纯前端实现这个强大的数据分析功能?

葡萄城技术团队

前端

新手指南|帮助中心应该包含哪些内容?

Geek_da0866

阿里云AIoT物联网平台技术集锦

阿里云AIoT

数据挖掘 运维 监控 物联网 消息中间件

开源无界 携手共创|观测云参加 SUSECON 2022 北京开源技术峰会

观测云

StarRocks 技术内幕:向量化编程精髓

StarRocks

toB行业知识管理的重要性

Baklib

听潮汐,筑灯塔,聚千帆:智慧港口全球创新实验室启航时

脑极体

哪些数据被纳入元数据管理的范畴?

雨果

元数据

物联网平台如何支持设备的多样化接入——设备接入类

阿里云AIoT

网络协议 存储 数据采集 JSON库 传感器

一次minerd肉鸡木马的排查思路

京东科技开发者

安全 木马病毒

非科班出身,开发五年之后我对编程有了新的领悟

Java永远的神

Java 编程 程序员 程序人生 计算机

超全面!字节最新发布22年秋招200道Java面试题(含答案)

Java面试那些事儿

Java 编程 面试 后端 架构师

[极致用户体验] 2行代码,让你的UI适配移动端、PC端,快来收藏

HullQin

CSS JavaScript html 前端 8月月更

怎样设计一个协助中心来帮助你的顾客?

Baklib

谷歌首创基于云的AI自治系统,为数据中心自动降温_AI&大模型_DeepMind_InfoQ精选文章