写点什么

Airbnb 使用净推荐值 (NPS) 预测用户再次预定率

  • 2016-03-02
  • 本文字数:1563 字

    阅读完需:约 5 分钟

净推荐值(Net Promoter Score, NPS)是一个度量用户忠诚度的指标,用于计量用户再次访问公司网站或使用公司服务的可能性。 Fred Reicheld 在 2003 年首次提出这一概念。NPS 的计算基于用户对问题“推荐可能性”(LTR)——向朋友推荐公司产品、服务、活动的可能性有多大——的反馈。用户根据愿意推荐的程度在 0 到 10 之间进行打分,基于打分结果可以计算 NPS 值。

打分为 9 或 10 分的用户称为“推荐者”,这些用户愿意押上他们的名声向朋友推荐。打分在 0 到 6 之间的用户称为“批评者”,这些用户对公司不满意,可能会告诉他们的朋友或同事不值得在公司的产品或服务上浪费时间。打分为 7 或 8 分的用户被认为是“被动的”,他们喜欢公司的产品或服务,但不会向朋友推荐。

NPS 值等于推荐者所占的百分比减去批评者所占的百分比:

NPS = (推荐者数 / 总样本数)*100% - (批评者数 / 总样本数)*100%
* 推荐者数 = 打分为 9 或 10 分的用户数
* 批评者数 = 打分在 0 到 6 分之间的用户数

NPS 值的范围从 -100(所有被调查用户都是批评者)到 100(所有被调查用户都是推荐者)。

Airbnb 公司的产品为用户提供了列举、探索和预订全球范围内独一无二住处的社区市场。Airbnb 公司将 NPS 值全面地用于度量用户忠诚度。他们相信这是一种更为有效的评估用户再次预订或向朋友推荐的可能性的指标。

Airbnb 工程师团队的 Lisa Qian 最近在他们的技术博客里描述了他们如何使用数据来评估旅行的质量。他们发现更高的NPS 值一般与更高的推荐率和再次预订率相对应。

该团队也使用其它用户评价指标来预测再次预订率,如准确性(Accuracy)、整洁度(Cleanliness)、入住(Checkin)、沟通(Communication)、地点(Location) 和价值(Value) 等。通过比较一系列嵌套的Logistic 回归模型,他们可以评估用户评价等级对用户在本次旅行结束后12 个月内是否会再次使用Airbnb 的预测能力.

这里有一些有趣的预测用户再次预订情况的统计。仅仅使用用户旅行结束后的LTR 反馈,Airbnb 团队能准确预测用户在未来12 个月再次预订情况的概率是56%。加入用户、户主及旅行的基本信息后,预测准确率提升到63.5%。再加入用户评价指标(不包含LTR),预测准确率提升了0.1%。

我们在 InfoQ QCon 会议都采用了 NPS 值来评估我们的读者访问网站或参加会议的可能性。编辑部负责人 Charles Humble 告诉我:

最初是我们的 CEO 兼联合创始人 Floyd Marinescu 倡导使用 NPS,并很快被 QCon 巴西团队采用。从那之后我们逐渐在各项产品中使用 NPS。

对于 QCon,我们在会议结束后分发给参会者的调查问卷里加入了 NPS 问题。最近,我们还使用第三方工具 Qeryz 询问第一次使用 InfoQ 的读者 NPS 问题。我们相当满意我们得到的 NPS 值——42%,而得分最高的英国 QCon 是 53%。我们认为现在的得分很不错,但在公司内部有很大的主动性要提升 NPS 值。

NPS 值只是我们使用的若干度量值中的一个,但它确实有帮助。如果 NPS 值下降,这是一个很有效的预警信号,表示我们需要进行调查并尝试解决问题了。它也可以很好地帮助我们比较不同产品、不同地区的效果。

有一些对NPS 的批评认为,相比于其它与用户忠诚度相关的调查问题,NPS 并没有提供更多的信息。此外,没有研究证据表明“推荐可能性”问题与其它用户忠诚度调查问题相比,可以更好地预测商业增长情况。另一些批评认为NPS 使用了低预测有效性的数值范围,不如综合维度的问题准确,并且NPS 不能预测忠诚行为。

查看英文原文: How Airbnb Uses Net Promoter Score to Predict Guest Rebooking


感谢张龙对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-03-02 18:003570

评论

发布
暂无评论
发现更多内容

MegEngine 正式支持 XLA 啦!

MegEngineBot

模型训练 开源框架 模型推理

利用人工智能自动找Bug

测吧(北京)科技有限公司

测试

Nougat:结合光学神经网络,引领学术PDF文档的智能解析、挖掘学术论文PDF的价值

汀丶人工智能

人工智能

人工智能/自动化办公/自动化测试 | Python全栈开发班开始报名啦!

测吧(北京)科技有限公司

测试

OpenTiny Vue 组件库3.12.0 发布:文档大优化!增加水印和二维码两个新组件

OpenTiny社区

开源 前端 前端ui组件库

Apifox 迭代更新:在线文档多格式导出、用户反馈问题优化,体验升级!

Apifox

程序员 开发工具 Apifox 接口工具 API 工具

LED显示屏行业:消费驱动和零售渠道的新发展

Dylan

技术 LED显示屏 led显示屏厂家 消费

GTD任务管理器:Chaos Control 免激活最新版

mac大玩家j

Mac软件 任务管理器

人工智能 | 测试工程师如何突破职业瓶颈?

测吧(北京)科技有限公司

测试

软件测试/人工智能丨利用人工智能 ChatGPT 自动进行测试需求分析

测试人

人工智能 软件测试

拆解全景,解锁未来——深度分析大模型六大领域及五大应用解决方案

SEAL安全

人工智能 AI LLM LLM模型

人工智能 | 如何利用ChatGPT自动生成测试用例思维导图

测吧(北京)科技有限公司

测试

生态发展 人才先行 | 深开鸿亮相首届OpenHarmony人才生态大会

新消费日报

输入更多字符以增强大模型学习

百度开发者中心

人工智能 深度学习 大模型

把大模型当CPU,前阿里云首席安全科学家创业项目曝光

Openlab_cosmoplat

理解Mysql索引原理及特性 | 京东物流技术团队

京东科技开发者

MySQL 数据库 索引

给祖传系统做了点 GC调优,暂停时间降低了 90% | 京东云技术团队

京东科技开发者

jvm调优 GC调优 系统优化

国产大模型与国外差距的深度解析

百度开发者中心

人工智能 大模型 ChatGPT

软件测试/人工智能|人工智能与自动化测试结合实战-探索人工智能在测试领域中的应用

霍格沃兹测试开发学社

高效图像压缩器 4K Image Compressor Pro激活中文版

胖墩儿不胖y

压缩图片 图片压缩器 图片管理工具

人工智能 | 什么是字符串?

测吧(北京)科技有限公司

测试

人工智能 | 利用ChatGPT自动生成基于PO的数据驱动测试框架

测吧(北京)科技有限公司

测试

使用 Taro 开发鸿蒙原生应用 —— 当 Taro 遇到纯血鸿蒙 | 京东云技术团队

京东科技开发者

taro 前端 Web 鸿蒙Next

33 | 字符串匹配基础(中 ,下):如何实现文本编辑器中的查找功能

鲁米

软件测试/人工智能丨利用人工智能 ChatGPT 自动进行测试需求分析

测试人

人工智能 软件测试

详细了解云堡垒机的作用,提高企业数据信息安全

行云管家

云计算 云服务 数据安全 企业上云 云堡垒机

开发案例:使用canvas实现图表系列之折线图

HarmonyOS开发者

HarmonyOS

技术人对于文章标题的 4 点思考

Java 工程师蔡姬

技术人 21 天技术人写作行动营

WiFi7-MLO(Multi-link)-IPQ9574-QCN6274- Multi-band data transmission - Improve spectrum utilization

wifi6-yiyi

ipq5018 WiFi7 ipq9574

大模型:深度学习之旅与未来趋势

不会算法。

大模型时代的自然语言处理利器

百度开发者中心

人工智能 大模型 Prompt

Airbnb使用净推荐值(NPS)预测用户再次预定率_大数据_Srini Penchikala_InfoQ精选文章