AICon 上海站|日程100%上线,解锁Al未来! 了解详情
写点什么

Airbnb 使用净推荐值 (NPS) 预测用户再次预定率

  • 2016-03-02
  • 本文字数:1563 字

    阅读完需:约 5 分钟

净推荐值(Net Promoter Score, NPS)是一个度量用户忠诚度的指标,用于计量用户再次访问公司网站或使用公司服务的可能性。 Fred Reicheld 在 2003 年首次提出这一概念。NPS 的计算基于用户对问题“推荐可能性”(LTR)——向朋友推荐公司产品、服务、活动的可能性有多大——的反馈。用户根据愿意推荐的程度在 0 到 10 之间进行打分,基于打分结果可以计算 NPS 值。

打分为 9 或 10 分的用户称为“推荐者”,这些用户愿意押上他们的名声向朋友推荐。打分在 0 到 6 之间的用户称为“批评者”,这些用户对公司不满意,可能会告诉他们的朋友或同事不值得在公司的产品或服务上浪费时间。打分为 7 或 8 分的用户被认为是“被动的”,他们喜欢公司的产品或服务,但不会向朋友推荐。

NPS 值等于推荐者所占的百分比减去批评者所占的百分比:

NPS = (推荐者数 / 总样本数)*100% - (批评者数 / 总样本数)*100%
* 推荐者数 = 打分为 9 或 10 分的用户数
* 批评者数 = 打分在 0 到 6 分之间的用户数

NPS 值的范围从 -100(所有被调查用户都是批评者)到 100(所有被调查用户都是推荐者)。

Airbnb 公司的产品为用户提供了列举、探索和预订全球范围内独一无二住处的社区市场。Airbnb 公司将 NPS 值全面地用于度量用户忠诚度。他们相信这是一种更为有效的评估用户再次预订或向朋友推荐的可能性的指标。

Airbnb 工程师团队的 Lisa Qian 最近在他们的技术博客里描述了他们如何使用数据来评估旅行的质量。他们发现更高的NPS 值一般与更高的推荐率和再次预订率相对应。

该团队也使用其它用户评价指标来预测再次预订率,如准确性(Accuracy)、整洁度(Cleanliness)、入住(Checkin)、沟通(Communication)、地点(Location) 和价值(Value) 等。通过比较一系列嵌套的Logistic 回归模型,他们可以评估用户评价等级对用户在本次旅行结束后12 个月内是否会再次使用Airbnb 的预测能力.

这里有一些有趣的预测用户再次预订情况的统计。仅仅使用用户旅行结束后的LTR 反馈,Airbnb 团队能准确预测用户在未来12 个月再次预订情况的概率是56%。加入用户、户主及旅行的基本信息后,预测准确率提升到63.5%。再加入用户评价指标(不包含LTR),预测准确率提升了0.1%。

我们在 InfoQ QCon 会议都采用了 NPS 值来评估我们的读者访问网站或参加会议的可能性。编辑部负责人 Charles Humble 告诉我:

最初是我们的 CEO 兼联合创始人 Floyd Marinescu 倡导使用 NPS,并很快被 QCon 巴西团队采用。从那之后我们逐渐在各项产品中使用 NPS。

对于 QCon,我们在会议结束后分发给参会者的调查问卷里加入了 NPS 问题。最近,我们还使用第三方工具 Qeryz 询问第一次使用 InfoQ 的读者 NPS 问题。我们相当满意我们得到的 NPS 值——42%,而得分最高的英国 QCon 是 53%。我们认为现在的得分很不错,但在公司内部有很大的主动性要提升 NPS 值。

NPS 值只是我们使用的若干度量值中的一个,但它确实有帮助。如果 NPS 值下降,这是一个很有效的预警信号,表示我们需要进行调查并尝试解决问题了。它也可以很好地帮助我们比较不同产品、不同地区的效果。

有一些对NPS 的批评认为,相比于其它与用户忠诚度相关的调查问题,NPS 并没有提供更多的信息。此外,没有研究证据表明“推荐可能性”问题与其它用户忠诚度调查问题相比,可以更好地预测商业增长情况。另一些批评认为NPS 使用了低预测有效性的数值范围,不如综合维度的问题准确,并且NPS 不能预测忠诚行为。

查看英文原文: How Airbnb Uses Net Promoter Score to Predict Guest Rebooking


感谢张龙对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-03-02 18:003720

评论

发布
暂无评论
发现更多内容

react源码分析:babel如何解析jsx

flyzz177

React

【前端相关】服务端渲染和客户端渲染的比较

No8g攻城狮

CSS css3 前端 js 前端框架

卡塔尔世界杯出现了半自动越位识别技术、动作轨迹捕捉等黑科技。

汀丶人工智能

12月日更 12月月更 世界杯黑科技

架构实战营 2-5 微信红包分析随堂测验

西山薄凉

「架构实战营」

Java培训一般需要多长时间?

小谷哥

北京同仁堂两大名牌品种亮相帝都

联营汇聚

2022-12-12:有n个城市,城市从0到n-1进行编号。小美最初住在k号城市中 在接下来的m天里,小美每天会收到一个任务 她可以选择完成当天的任务或者放弃该任务 第i天的任务需要在ci号城市完成,

福大大架构师每日一题

算法 rust 福大大

JDK自带命令优化

@下一站

代码优化 12月日更 12月月更 jvm优化 java程序优化

从React源码角度看useCallback,useMemo,useContext

flyzz177

React

演讲实录|OpenMLDB 与阿里云 MaxCompute 生态集成

第四范式开发者社区

人工智能 数据库 开源 时序数据库 特征

重磅 | 九科信息入选创新型中小企业(原深圳市专精特新企业)

九科Ninetech

2022年11月中国汽车智能网联月度观察

易观分析

汽车 智能网联

架构实战营 2-6 钱包高可用实战随堂练习

西山薄凉

「架构实战营」

带你实现react源码的核心功能

flyzz177

React

react源码中的生命周期和事件系统

flyzz177

React

数据生态第四弹 | OpenMLDB Hive Connector,架构起数据仓库到特征工程的生态桥梁

第四范式开发者社区

人工智能 机器学习 数据库 开源 特征

云计算的六大核心技术,你了解多少?

Finovy Cloud

云技术 云渲染

KCL - 让 Kubernetes 资源清单管理更容易

Peefy

编程 Serverless Kubernetes #开源 #DevOps

学习java开发技术应该如何入手

小谷哥

FLStudio21.0.0水果官方中文版发布功能介绍

茶色酒

FLStudio21.0.0

React 之 Context 的变迁与背后实现

冴羽

JavaScript 源码分析 前端 前端框架 React

Flink核心组件

穿过生命散发芬芳

flink 12月月更

react源码分析:实现react时间分片

flyzz177

React

“智造新未来”欧比护理智造总部奠基仪式

联营汇聚

易观分析潘玉宇:信贷全流程化监管将成行业发展重点,银行间联合风控程度将逐渐加深

易观分析

银行 普惠金融

RocketMQ 在网易云音乐的实践

Apache RocketMQ

RocketMQ 消息

Java开发技术很难吗?

小谷哥

Verilog 时延与过程结构

芯动大师

Verilog语法 Verilog延时 Verilog过程结构

【IntelliJ IDEA】【SVN】SVN详细的介绍和Idea中如何使用SVN

No8g攻城狮

ide svn Git Submodule git fetch IDEA DeBug

从React源码来学hooks是不是更香呢

flyzz177

React

前端培训学习前景怎么样

小谷哥

Airbnb使用净推荐值(NPS)预测用户再次预定率_大数据_Srini Penchikala_InfoQ精选文章