写点什么

Airbnb 使用净推荐值 (NPS) 预测用户再次预定率

  • 2016-03-02
  • 本文字数:1563 字

    阅读完需:约 5 分钟

净推荐值(Net Promoter Score, NPS)是一个度量用户忠诚度的指标,用于计量用户再次访问公司网站或使用公司服务的可能性。 Fred Reicheld 在 2003 年首次提出这一概念。NPS 的计算基于用户对问题“推荐可能性”(LTR)——向朋友推荐公司产品、服务、活动的可能性有多大——的反馈。用户根据愿意推荐的程度在 0 到 10 之间进行打分,基于打分结果可以计算 NPS 值。

打分为 9 或 10 分的用户称为“推荐者”,这些用户愿意押上他们的名声向朋友推荐。打分在 0 到 6 之间的用户称为“批评者”,这些用户对公司不满意,可能会告诉他们的朋友或同事不值得在公司的产品或服务上浪费时间。打分为 7 或 8 分的用户被认为是“被动的”,他们喜欢公司的产品或服务,但不会向朋友推荐。

NPS 值等于推荐者所占的百分比减去批评者所占的百分比:

NPS = (推荐者数 / 总样本数)*100% - (批评者数 / 总样本数)*100%
* 推荐者数 = 打分为 9 或 10 分的用户数
* 批评者数 = 打分在 0 到 6 分之间的用户数

NPS 值的范围从 -100(所有被调查用户都是批评者)到 100(所有被调查用户都是推荐者)。

Airbnb 公司的产品为用户提供了列举、探索和预订全球范围内独一无二住处的社区市场。Airbnb 公司将 NPS 值全面地用于度量用户忠诚度。他们相信这是一种更为有效的评估用户再次预订或向朋友推荐的可能性的指标。

Airbnb 工程师团队的 Lisa Qian 最近在他们的技术博客里描述了他们如何使用数据来评估旅行的质量。他们发现更高的NPS 值一般与更高的推荐率和再次预订率相对应。

该团队也使用其它用户评价指标来预测再次预订率,如准确性(Accuracy)、整洁度(Cleanliness)、入住(Checkin)、沟通(Communication)、地点(Location) 和价值(Value) 等。通过比较一系列嵌套的Logistic 回归模型,他们可以评估用户评价等级对用户在本次旅行结束后12 个月内是否会再次使用Airbnb 的预测能力.

这里有一些有趣的预测用户再次预订情况的统计。仅仅使用用户旅行结束后的LTR 反馈,Airbnb 团队能准确预测用户在未来12 个月再次预订情况的概率是56%。加入用户、户主及旅行的基本信息后,预测准确率提升到63.5%。再加入用户评价指标(不包含LTR),预测准确率提升了0.1%。

我们在 InfoQ QCon 会议都采用了 NPS 值来评估我们的读者访问网站或参加会议的可能性。编辑部负责人 Charles Humble 告诉我:

最初是我们的 CEO 兼联合创始人 Floyd Marinescu 倡导使用 NPS,并很快被 QCon 巴西团队采用。从那之后我们逐渐在各项产品中使用 NPS。

对于 QCon,我们在会议结束后分发给参会者的调查问卷里加入了 NPS 问题。最近,我们还使用第三方工具 Qeryz 询问第一次使用 InfoQ 的读者 NPS 问题。我们相当满意我们得到的 NPS 值——42%,而得分最高的英国 QCon 是 53%。我们认为现在的得分很不错,但在公司内部有很大的主动性要提升 NPS 值。

NPS 值只是我们使用的若干度量值中的一个,但它确实有帮助。如果 NPS 值下降,这是一个很有效的预警信号,表示我们需要进行调查并尝试解决问题了。它也可以很好地帮助我们比较不同产品、不同地区的效果。

有一些对NPS 的批评认为,相比于其它与用户忠诚度相关的调查问题,NPS 并没有提供更多的信息。此外,没有研究证据表明“推荐可能性”问题与其它用户忠诚度调查问题相比,可以更好地预测商业增长情况。另一些批评认为NPS 使用了低预测有效性的数值范围,不如综合维度的问题准确,并且NPS 不能预测忠诚行为。

查看英文原文: How Airbnb Uses Net Promoter Score to Predict Guest Rebooking


感谢张龙对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-03-02 18:003794

评论

发布
暂无评论
发现更多内容

呼叫医生云! Amazon HealthLake 现已正式上线

亚马逊云科技 (Amazon Web Services)

AI ML

Flink 实践教程-进阶(6):CEP 复杂事件处理

腾讯云大数据

流计算 Oceanus

助力产教融合,夯实数据库产业人才基座!openGauss社区分委会正式成立

在线常用crontab表达式大全验证解析

入门小站

工具

转换匹配患者记录,看Amazon Lake Formation FindMatches显神通!

亚马逊云科技 (Amazon Web Services)

analytics

圆桌对话:云时代下,企业运维面临的挑战与机遇

阿里云弹性计算

运维峰会 圆桌对话

腾讯云原生实时数仓建设实践

腾讯云大数据

flink window 流计算 Oceanus

边缘网络 eBPF 超能力:eBPF map 原理与性能解析

火山引擎边缘云

开源demo| 智慧协同demo升级——协同更直观方便

anyRTC开发者

音视频 白板 智慧协同 开源demo 远程协助

3个重点,20个函数分析,浅析FFmpeg转码过程

奔着腾讯去

音视频 WebRTC ffmpeg RTMP RTSP

Mysql索引

zdd

MySQL

吐槽一下网站

你?

使用Amazon Redshift Simple Replay实用程序简化Amazon Redshift RA3迁移评估

亚马逊云科技 (Amazon Web Services)

mad

openGauss数据库源码解析系列文章——存储引擎源码解析(五)

专注于最有价值的事情!——亚马逊云科技首席科学家工作心得分享

亚马逊云科技 (Amazon Web Services)

Date

阿里云手机正式公测,定义手机全新接入方式

阿里云弹性计算

阿里云 弹性云手机

如何使团队的git log更优雅

阿呆

#GitLab

在Spark Scala/Java应用中调用Python脚本,会么?

华为云开发者联盟

Python spark python脚本 Spark Scala Java应用

低代码实现探索(十六)业务勾连复杂验证器

零道云-混合式低代码平台

只需5步!在轻量应用服务器部署Hexo博客

阿里云弹性计算

Hexo 轻量征文 用户投稿

Linux之df命令

入门小站

Linux

恒源云(GPUSHARE)_语音识别与语义处理领域之低资源机器翻译综述

恒源云

机器翻译 语音识别

数云运维总监陈延宗:基于阿里云计算巢,数云CRM一键云上交付

阿里云弹性计算

弹性计算 年度峰会 计算巢

物联网场景中灵活实施对设备的控制管理

亚马逊云科技 (Amazon Web Services)

openGauss 助力邮储银行分布式新核心迈向智能运维时代

腾讯云 AI 视觉产品基于流计算 Oceanus(Flink)的计费数据去重尝试

腾讯云大数据

AI flink window

首届LoongArch生态创新大会成功召开,筑巢引凤共建信息产业命运共同体

OpenAnolis小助手

开源 芯片 白皮书

百度APP浏览内核资源加载优化实践 -- ResourceScheduler 调优机制

百度开发者中心

百度app

效果提升28个点!基于领域预训练和对比学习SimCSE的语义检索

百度大脑

人工智能

透析阿里云视频云「低代码音视频工厂」之能量引擎——vPaaS视频原生应用开发平台

阿里云CloudImagine

云计算 阿里云 音视频 低代买

2021年12月券商App行情刷新及交易体验评测报告

博睿数据

Airbnb使用净推荐值(NPS)预测用户再次预定率_大数据_Srini Penchikala_InfoQ精选文章