2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

Airbnb 使用净推荐值 (NPS) 预测用户再次预定率

  • 2016-03-02
  • 本文字数:1563 字

    阅读完需:约 5 分钟

净推荐值(Net Promoter Score, NPS)是一个度量用户忠诚度的指标,用于计量用户再次访问公司网站或使用公司服务的可能性。 Fred Reicheld 在 2003 年首次提出这一概念。NPS 的计算基于用户对问题“推荐可能性”(LTR)——向朋友推荐公司产品、服务、活动的可能性有多大——的反馈。用户根据愿意推荐的程度在 0 到 10 之间进行打分,基于打分结果可以计算 NPS 值。

打分为 9 或 10 分的用户称为“推荐者”,这些用户愿意押上他们的名声向朋友推荐。打分在 0 到 6 之间的用户称为“批评者”,这些用户对公司不满意,可能会告诉他们的朋友或同事不值得在公司的产品或服务上浪费时间。打分为 7 或 8 分的用户被认为是“被动的”,他们喜欢公司的产品或服务,但不会向朋友推荐。

NPS 值等于推荐者所占的百分比减去批评者所占的百分比:

NPS = (推荐者数 / 总样本数)*100% - (批评者数 / 总样本数)*100%
* 推荐者数 = 打分为 9 或 10 分的用户数
* 批评者数 = 打分在 0 到 6 分之间的用户数

NPS 值的范围从 -100(所有被调查用户都是批评者)到 100(所有被调查用户都是推荐者)。

Airbnb 公司的产品为用户提供了列举、探索和预订全球范围内独一无二住处的社区市场。Airbnb 公司将 NPS 值全面地用于度量用户忠诚度。他们相信这是一种更为有效的评估用户再次预订或向朋友推荐的可能性的指标。

Airbnb 工程师团队的 Lisa Qian 最近在他们的技术博客里描述了他们如何使用数据来评估旅行的质量。他们发现更高的NPS 值一般与更高的推荐率和再次预订率相对应。

该团队也使用其它用户评价指标来预测再次预订率,如准确性(Accuracy)、整洁度(Cleanliness)、入住(Checkin)、沟通(Communication)、地点(Location) 和价值(Value) 等。通过比较一系列嵌套的Logistic 回归模型,他们可以评估用户评价等级对用户在本次旅行结束后12 个月内是否会再次使用Airbnb 的预测能力.

这里有一些有趣的预测用户再次预订情况的统计。仅仅使用用户旅行结束后的LTR 反馈,Airbnb 团队能准确预测用户在未来12 个月再次预订情况的概率是56%。加入用户、户主及旅行的基本信息后,预测准确率提升到63.5%。再加入用户评价指标(不包含LTR),预测准确率提升了0.1%。

我们在 InfoQ QCon 会议都采用了 NPS 值来评估我们的读者访问网站或参加会议的可能性。编辑部负责人 Charles Humble 告诉我:

最初是我们的 CEO 兼联合创始人 Floyd Marinescu 倡导使用 NPS,并很快被 QCon 巴西团队采用。从那之后我们逐渐在各项产品中使用 NPS。

对于 QCon,我们在会议结束后分发给参会者的调查问卷里加入了 NPS 问题。最近,我们还使用第三方工具 Qeryz 询问第一次使用 InfoQ 的读者 NPS 问题。我们相当满意我们得到的 NPS 值——42%,而得分最高的英国 QCon 是 53%。我们认为现在的得分很不错,但在公司内部有很大的主动性要提升 NPS 值。

NPS 值只是我们使用的若干度量值中的一个,但它确实有帮助。如果 NPS 值下降,这是一个很有效的预警信号,表示我们需要进行调查并尝试解决问题了。它也可以很好地帮助我们比较不同产品、不同地区的效果。

有一些对NPS 的批评认为,相比于其它与用户忠诚度相关的调查问题,NPS 并没有提供更多的信息。此外,没有研究证据表明“推荐可能性”问题与其它用户忠诚度调查问题相比,可以更好地预测商业增长情况。另一些批评认为NPS 使用了低预测有效性的数值范围,不如综合维度的问题准确,并且NPS 不能预测忠诚行为。

查看英文原文: How Airbnb Uses Net Promoter Score to Predict Guest Rebooking


感谢张龙对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-03-02 18:004040

评论

发布
暂无评论
发现更多内容

腾讯高工强烈推荐的“Netty速成手册”原理+应用+调优,带你将知识点一网打尽

比伯

Java 编程 程序员 架构 Netty

云图说 | 云上资源管控有神器!关于IAM,你想知道的都在这里!

华为云开发者联盟

服务 权限管理 iam

智慧城市建设,社区智能化系统搭建解决方案

t13823115967

智慧城市 平安小区

产品策略闭环是个什么环?

万事ONES

项目管理 团队协作 需求管理 需求分析 产品策略

从 JMM 透析 volatile 与 synchronized 原理

码哥字节

volatile JVM JMM Java 25 周年 synchronized

为了SpringBoot提交Tomcat执行,我总结了这么多

小Q

tomcat 学习 面试 微服务 springboot

80%Java开发者面试都问的SpringBoot你竟不会?看完这些笔记足以

Java架构之路

Java 程序员 架构 面试 编程语言

Java进阶文档:彻底搞懂JVM+Linux+MySQL+Netty+Tomcat+并发编程

Java架构之路

Java 程序员 架构 面试 编程语言

Prometheus TSDB(Part 2):预写日志(WAL)和检查点

Grafana 爱好者

云原生 Prometheus tsdb 可观察性

答了Mybatis这个问题后,面试官叫我回去等通知……

田维常

mybatis

IDEA 文档插件 DocView 版本更新:修改 UI 并支持 IDEA 2020.3 !

程序员小航

idea插件 IntelliJ IDEA 文档生成

一文带你彻底了解大数据处理引擎Flink内存管理

华为云开发者联盟

大数据 数据 处理

我和阿里P7差的不是薪资?而是Redis+微服务+Nginx+MySQL+Tomcat

Java架构之路

Java 程序员 架构 面试 编程语言

一文为你详解Unique SQL原理和应用

华为云开发者联盟

数据库 sql unique

EZYTRX波场智能合约APP系统软件开发

系统开发

解析字节算法面试真题,深入探究ArrayList应用原理

小Q

Java 学习 编程 架构 面试

将原则纳入到架构的生命中

soolaugust

架构 思考 设计

《大数据算法》.pdf

田维常

算法

面试被问高并发一脸懵?那是你没看过我整理得高并发回答模板

小Q

Java 学习 面试 高并发 性能调优

VACUUM无法从表中删除死元组的三个原因

PostgreSQLChina

数据库 postgresql

一口气说出四种幂等性解决方案,面试官露出了姨母笑~

不才陈某

Java 分布式 接口

盘点2020 | 疫情下的思考和学习

soolaugust

盘点2020

智慧警务可视化平台开发,重点人员管控系统搭建

t13823115967

智慧公安 智慧警务系统开发

从源码的角度搞懂 Java 动态代理!

Java架构师迁哥

好久不见!这份Spring全家桶、Docker、Redis架构大礼包免费赠送

Java架构之路

Java 程序员 架构 面试 编程语言

LeetCode题解:127. 单词接龙,BFS+统计单词变化次数,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

dubbogo 3.0:牵手 gRPC 走向云原生时代

阿里巴巴云原生

gRPC 云原生 中间件 dubbo-go Go 语言

硬肝到秃头!Alibaba强推并发编程笔记我跪了,真的学到好多东西!

Java架构追梦

Java 学习 架构 面试 并发编程

什么是全场景AI计算框架MindSpore?

华为云开发者联盟

人工智能 AI mindspore

耗时一个月整理的97道大厂Java核心面试题出炉,精心整理,无偿分享

Java架构之路

Java 程序员 架构 面试 编程语言

太赞了!滴滴开源了一套分布式ID的生成系统...

Java架构师迁哥

Airbnb使用净推荐值(NPS)预测用户再次预定率_大数据_Srini Penchikala_InfoQ精选文章