AICon 上海站|日程100%上线,解锁Al未来! 了解详情
写点什么

Java 火焰图在 Netflix 的实践

  • 2015-08-04
  • 本文字数:1672 字

    阅读完需:约 5 分钟

为了分析不同软件或软件的不同版本使用 CPU 的情况,相关设计人员通常需要进行函数的堆栈性能分析。相比于定期采样获得数据的方式,利用定时中断来收集程序运行时的 PC 寄存器值、函数地址以及整个堆栈轨迹更加高效。目前, OProfile gprof SystemTap 等工具都是采用该方法,给出详细的 CPU 使用情况报告。然而,这些工具在处理复杂的统计数据时,给出的报告往往过于繁杂、不够直观、不能直接反应分析员所需要的数据。为此,Brendan Gregg 开发了专门把采样到的堆栈轨迹(Stack Trace)转化为直观图片显示的工具—— Flame Graph(火焰图)。但是,由于分析器与 JDK 环境等原因,Java 程序的混合模式火焰图之前无法生成。近期,Brendan Gregg 和 Martin Spier 发现了一种解决该问题的方法,在 Netflix 内部进行了实践,并贡献了一篇非常详尽的实践性文章。为Java 程序的性能分析提供了极大便利。接下来,本文就从该问题出现的原因开始,简要介绍其解决该问题的思路和方法。

首先,本文对火焰图的概念进行简要介绍。火焰图既是一个开源工具,也是一种类型的图片。作为一个二维图片,火焰图的X 轴代表采样总量,而Y 轴代表栈深度。每个框就代表了一个栈里的函数,其宽度代表了所占用的CPU 总时间。因此,比较宽的框就表示该函数运行时间较慢或被调用次数较多,从而占用的CPU 时间多。通过火焰图,相关设计或分析人员就可以轻松观察到各个应用占用CPU 的情况。

但是,火焰图本身并不具备性能检测的能力。它需要其他性能分析工具的协助。在Java 环境中,一共有两种类型的堆栈轨迹采样分析器——系统分析器(System Profiler)和JVM 分析器(JVM Profiler)。前者(如Linux 的 Perf Events )可以分析系统代码路径,包括 libjvm internal、GC 和内核,但并不能分析 Java 方法;后者(如 HPROF 、轻量级 Java 分析器和其他商业分析器)可以显示 Java 方法,但不能显示系统代码路径。由此可见,这两种方法都不能同时支持系统代码路径和 Java 方法的堆栈轨迹。而分别描述二者的火焰图又不能很好的满足需求。因此,Brendan 等人一直关注如何解决该问题。

在之前的一次讨论中,Brendan 曾经对系统分析器不能显示Java 方法的原因进行分析。这包括两个方面——JVM 编译方法时比较快,没有为系统分析器暴露一个符号表;JVM 采用x86 上的frame pointer 作为一个通用寄存器,破坏了传统的stack walking。那么,解决之前的问题,就需要分别从这两个方面入手。对于第一个方面,Java 和Linux 系统的分析器进行了双方面的努力。首先,Java 开始支持利用开源的JVMTI 代理 perf-map-agent 来创建 perf-PID.map 文本文件。该文件列举了 16 进制的符号地址、大小以及符号名称。然后,从 2009 年以后,Linux 中的 Perf_events 工具添加了对 JIT 符号的支持。该工具会检查 /tmp/perf-PID.map 文件,从而完成对来自语言虚拟机的符号进行检查。对于第二个方面,JVM 添加了一个新的选项 -XX:+PreserveFramePointer。经过 Zoltán、Oracle 和其他工程师的努力,最新的 JDK9 JDK8 已经增加了该选项,从而保存了 stack walking。

在两方面的问题都解决之后,用户只要经过安装 Perf Events、新版 JDK、perf-map-agent 以及 FlameGraph 等软件和配置 Java(尤其是打开 -XX:+PreserveFramePointer 选项)的步骤后,就可以产生系统级的火焰图了。为了让产生火焰图的流程自动化,Brendan 等人已经开始基于开源的实例化分析工具 Vector 进行流程的建模。

未来,Breden 等人还计划进行很多工作。其一是通过自动化收集不同日期的差分火焰图进行规则分析。这有助于迅速理解软件变化所导致的 CPU 使用率变化。此外,他们还试图利用 Perf Events 进行磁盘 IO、网络、调度以及内存分配等用户和内核级的事件记录和分析。最后,对火焰图和 Vector 进行实时更新等改进也是未来考虑增加的功能。


感谢徐川对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群)。

2015-08-04 06:518750
用户头像

发布了 268 篇内容, 共 128.4 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

用友战略签约广联达,共同使能建筑行业企业高质量发展

用友BIP

建筑行业

校源行丨开放原子开源基金会赴北京信息科技大学走访交流

开放原子开源基金会

火山引擎DataTester:跨境电商网站,如何快速实施AB测试 ?

字节跳动数据平台

大数据 A/B 测试 对比实验 数字化增长 企业号10月PK榜

FinClip小程序技术,加速国产化应用新进程

FinClip

使用 GitHub Action 自动更新 Sealos 集群的应用镜像

米开朗基杨

云原生 #go

使用eBPF加速阿里云服务网格ASM

阿里巴巴云原生

阿里云 云原生 服务网格

TiDB x Catalyst丨秒级洞悉数据价值,TiDB 帮助“客户成功 SaaS 厂商”提升用户体验

TiDB 社区干货传送门

TiDB 7.4 发版:正式兼容 MySQL 8.0

TiDB 社区干货传送门

出版行业企业如何快速实现数智化转型?

用友BIP

Fast by BIP 出版行业

如何强制SQL走性能更优的hash join

华为云开发者联盟

数据库 sql 后端 华为云 华为云开发者联盟

负载均衡详解

天翼云开发者社区

负载均衡 服务器

云网络对等连接产品的高可用保证

天翼云开发者社区

网络 对等连接

漱玉平民大药房:多元化药店变革的前夜

TiDB 社区干货传送门

【华秋商城】海量现货库存 闪电发货

华秋电子

连接器

Flink测试利器之DataGen初探 | 京东云技术团队

京东科技开发者

大数据 测试 flink sql 执行过程 企业号10月PK榜 DataGen

户外裸眼3D屏幕合适用什么规格

Dylan

3D LED显示屏 户外LED显示屏 led显示屏厂家

开放原子开源基金会联合主办的2023 CCF中国开源大会即将开幕

开放原子开源基金会

开源 CCF

以效率为导向:用ChatGPT和HttpRunner实现敏捷自动化测试(二) | 京东云技术团队

京东科技开发者

自动化测试 敏捷测试 HttpRunner ChatGPT 企业号10月PK榜

TiDB x 安能物流丨打造一栈式物流数据平台

TiDB 社区干货传送门

淘天集团大模型应用十大挑战命题发布

阿里技术

AI 校招 AIGC 淘天

Trino容错模式深度测评与思考

华为云开发者联盟

大数据 后端 华为云 华为云开发者联盟 交互式分析

数据如何同步到云服务器

天翼云开发者社区

云计算 数据迁移

软件测试/测试开发丨Python闭包与装饰器 学习笔记

测试人

Python 程序员 软件测试 自动化测试 测试开发

当HTAP已成标配,什么才是制胜关键?

MatrixOrigin

分布式数据库 云原生数据库 MatrixOrigin MatrixOne HTAP数据库

MySQL的index merge(索引合并)导致数据库死锁分析与解决方案 | 京东云技术团队

京东科技开发者

MySQL 数据库 索引 企业号10月PK榜

战略引领 注重实绩 形成闭环——中国交建绩效管理创新与数智化实践

用友BIP

绩效管理

EVE-NG初次启动及WEB客户端访问

小魏写代码

百度飞桨AI4S亮相全国动力学设计与反问题研讨会,助力汽车底盘智能设计

飞桨PaddlePaddle

深度学习 AI for Science

TiDB x Bolt丨超强可扩展性与弹性助力超 1 亿用户畅享出行服务

TiDB 社区干货传送门

TiDB v7.4.0 版本上线啦!看看有没有你想要的功能上线啦!

TiDB 社区干货传送门

如何借助CDC快速实现实时数据传输?

RestCloud

数据同步 ETL CDC

Java火焰图在Netflix的实践_Java_张天雷_InfoQ精选文章