Trifacta 通过服务简化数据整理方式

  • Alex Giamas
  • 廖煜嵘

2014 年 3 月 28 日

话题:DevOps大数据语言 & 开发架构AI

Trifacta是一种提供数据分析服务的平台,最近获得了风险投资以推动其能使数据分析师更容易地做数据整理的工作。它的目标是能够比目前更快、更容易地收集、清理和转换数据。

数据整理 (Data wrangling)一直是每个大数据项目中最耗费时间和最令人痛苦的部分。在我们这个时代,数据是流动的、异构的,作为数据源其属性会不断变化。NoSQL 数据库一直都尝试解答在存储方面是使用基于列式存储还是基于文档型存储,但问题依然是如何收集数据和应用其语义。

Trifacta 以用户为中心的角度而不是以程序员的角度去解决问题。业务分析师和数据科学家将能使用可视化的方式去清洗数据集。基于伯克利分校和斯坦福大学的研究,该平台的目的是使员工和机器一起合作,以从数据集中提取数据。

使用可视化的方式我们可以从大数据集中自动化采样数据,这让分析师可以在很短的时间发现有趣的模式。Trifacta 可以应用机器学习算法为重新组织信息和整理提供建议。分析师可以将数据集分组为信息的逻辑部分,每次将其规范化,并在其工作过程中以友好的界面方式显示。归纳概括整个数据集合是最后一个步骤,这将最终形成半结构化的数据集并最终成形。该平台是在底层设计时考虑到用户的体验,让数据分析师能专注于数据的处理,而无需开发复杂的管道去清理数据和把它们放入数据仓库。

Trifacta 的项目前身DataWrangler相关研究文章都可以在线获取并可以从中了解 Trifacta 是如何实现的,因为它们目前依然处于封闭的 beta 测试阶段,所以只能通过预约邀请的方式进行演示。

查看英文原文:Trifacta Seeks to Simplify Data Wrangling-as-a-Service


感谢侯伯薇对本文的审校。

给 InfoQ 中文站投稿或者参与内容翻译工作,请邮件至editors@cn.infoq.com。也欢迎大家通过新浪微博(@InfoQ)或者腾讯微博(@InfoQ)关注我们,并与我们的编辑和其他读者朋友交流。

DevOps大数据语言 & 开发架构AI