写点什么

联邦学习全球首个工业级开源框架 FATE 完成重大更新:全球首次支持纵向联邦神经网络算法

  • 2020-01-19
  • 本文字数:1742 字

    阅读完需:约 6 分钟

联邦学习全球首个工业级开源框架FATE完成重大更新:全球首次支持纵向联邦神经网络算法

近两年来,联邦学习发展迅速,其作为分布式的机器学习范式,能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,从技术上打破数据孤岛,实现 AI 协作。而 FATE 作为联邦学习全球首个工业级开源框架,支持联邦学习架构体系,为机器学习、深度学习、迁移学习提供了高性能联邦学习机制。此外,其自身还支持多种多方安全计算协议,如同态加密、秘密共享、哈希散列等,具有友好的跨域交互信息管理方案。


近日,全球首个联邦学习工业级开源框架 FATE 1.2 版本正式发布,在该版本中,FATE 推出了两大重量级的更新项,分别为对纵向联邦 DNN 的支持以及对多方安全计算 SPDZ 协议的支持。作为首个支持纵向联邦神经网络算法的版本,开发者在纵向联邦建模的分类、回归、排序等场景下都可以明显感受到其支持性。而 SPDZ 秘密共享安全计算协议的的支持,进一步拓展和丰富了 FATE 的应用场景。


在之前的 1.0 大版本中,FATE 上线了首个可视化联邦学习产品与联邦 pipeline 生产服务。而在 1.1 大版本中,FATE 联合 VMware 中国研发开放创新中心云原生实验室联合发布了 KubeFATE 项目,通过把 FATE 的所有组件用容器的形式封装,实现了使用 Docker Compose 或 Kubernetes(Helm Charts)来部署。前两个版本分别在可视化使用体验及部署体验上做了重点提升,而 FATE v1.2 版本则回归至算法本身,进一步拓展其支持性。除两大重量级更新项以外,还新增了如二阶优化方法-纵向 SQN、数据管理模块等功能,前者能够显著提升纵向逻辑回归和纵向线性回归收敛效率,对算法加速起到关键作用。后者则用于记录 upload 的数据表及 Job 运行中模型的输出结果,并提供查询以及清理 CLI,项目已开源在GitHub上。

FederatedML: 开启纵向联邦深度学习和多种多方安全计算协议支持之旅

在 FATE 1.2 版本中,首次对外发布了纵向联邦深度学习框架,开启了 FATE 对深度学习联邦化的支持,开发者可以自定义深度神经网络结构。目前版本已支持 Tensorflow, 后续会推出 PyTorch 版本,便于开发者低代价迁移 Tensorflow 和 Pytorch 的使用习惯和经验。


在这一版本中,FATE 实现了 SPDZ 秘密共享多方安全计算协议的支持,这意味在现有同态加密协议的基础上,FATE 能为开发者提供更多样化的多方安全计算协议支持。开发者们可根据自身算法的特点,自由选择适合自身算法的多方安全计算协议,联邦学习的可应用范围得到进一步拓展。值得说明的是,在纵向皮尔逊特征相关性计算算法实现中,首次使用了 SPDZ 协议。


此外,算法性能优化方面, 新版本也首次引入二阶优化算法,提出了纵向 SQN 算法,并成功应用在纵向广义线性模型中,对算法性能有显著提升。特征分箱和特征选择新增对多方 host 联邦建模的支持,开始全方位的支持多 host 场景。

FATE-Board:两大可视化支持,实用性再提升

自 1.0 版本推出 FATE-Board 以来,这一产品受到了开发者广泛好评。而在 1.2 版本中,FATE 也对 FATE-Board 再次进行了提升,新增了对联邦模式下特征相关性、以及 LocalBaseline 组件的可视化支持。前者能够直观地分析特征之间的相关性分布情况,从而帮助开发者快速进行判断与特征选择。而后者则可以让开发者将基于联邦训练的模型与基于 sklearn 训练的模型结果进行直接对比,并从可视化报告对比中得出相关结论。


此外,这一版本的 FATE-Board 在用户体验方面也有了重大的提升,如工作流、模型输出图表图形、评估曲线等,都高度优化了可视化效果及交互操作,并增强了实用性。在使用中相信能让开发者体验再上一层楼。

FATE-Flow:FATE 数据管理模块,开启数据治理之路

在 FATE 1.2 版本中,FATE 新增加了数据管理模块,这将成为开启数据治理的第一步。从这一版本开始,在整个 Job 生命周期产生的数据都有迹可循了。此外,数据管理模块提供了诸如查询、删除等常用管理命令,这也极大地增强了开发者对数据的掌控能力。


总的来说,FATE 在 1.2 这一版本中,开启了对新领域的进一步拓展。无论是对纵向联邦深度学习框架,还是多方安全计算 SPDZ 协议的支持,都是在打磨底层框架,为未来 FATE 能支持更多应用场景提供一种可能。从这一版本也可以看出,除新功能外,FATE 对已有建模组件也在持续不断的优化和改进,致力于在效率,多样性和实用性上,为开发者提供更加优质的服务体验。


详情可查阅 FATE官网项目贡献者指南。


2020-01-19 09:442767

评论

发布
暂无评论
发现更多内容

如何用 Excel 做数据分析,提升你的工作效率?

搞大屏的小北

提升效率 Excel 数据可视化 DataEase

场景 | 九科信息大型制造企业RPA数字化解决方案

九科Ninetech

您有一套专属权益已送达,请注意查收

天翼云开发者社区

应用 Serverless 化,让业务开发心无旁骛

阿里巴巴中间件

阿里云 Serverless 云原生

效能指标「研发浓度」在项目度量中的应用

feijieppm

项目管理 技术管理 文化 & 方法 效能度量 #研发效能

如何选择数据可视化图表?

搞大屏的小北

DataEase 在 Windows 系统下的 jar 包部署

搞大屏的小北

DataEase 本地源码启动

搞大屏的小北

亚马逊云科技 2022 re:Invent 观察 | 天下武功,唯快不破

亚马逊云科技 (Amazon Web Services)

亚马逊云科技 Builder 专栏

再谈持续测试

FunTester

《天翼云安全白皮书》发布!共铸国云安全生态!

天翼云开发者社区

Higress 开源后,我们整理了开发者最关心的 15 个问题

阿里巴巴中间件

阿里云 云原生 Higress

容器服务与达摩院合作 AHPA 获 AAAI 2023 IAAI人工智能创新应用奖

阿里巴巴中间件

阿里云 容器 云原生

问题盘点|使用 Prometheus 监控 Kafka,我们该关注哪些指标

阿里巴巴中间件

kafka 阿里云 云原生 Prometheus

2023-01-11:体育馆的人流量。编写一个 SQL 查询以找出每行的人数大于或等于 100 且 id 连续的三行或更多行记录。返回按 visit_date 升序排列 的结果表。 DROP TAB

福大大架构师每日一题

MySQL 福大大

微服务引擎 MSE 升级至 3.0:降低微服务在云原生时代的演进成本

阿里巴巴中间件

阿里云 微服务 云原生

数据分析原来还可以这么搞?

搞大屏的小北

数据分析 知乎 数据分析工具

安全可信| 密评合规!天翼云全栈混合云通过商用密码应用安全性评估!

天翼云开发者社区

大前端—2022明星项目,2023展望

非喵鱼

JavaScript Vue 前端 React 前沿技术

RatingBar(星级评分条)

芯动大师

Android Studio 星级评分条 ratingbar

项目制实践如何助力组织进化

feijieppm

项目管理 研发效能 技术管理 文化 & 方法 效能度量

DataEase 在 Mac 系统下的 jar 包部署

搞大屏的小北

DataEase Mac 系统 jar 包部署

天翼云荣获2022年度“边缘计算先锋企业”“分布式云先锋企业”称号!

天翼云开发者社区

阿里巴巴重磅开源云原生网关: Higress

阿里巴巴中间件

阿里云 云原生 Higress

效能改进中的度量实践

feijieppm

项目管理 研发效能 技术管理 文化 & 方法 效能度量

国内外开源数据可视化工具对比:DataEase相较于MetaBase有何优势

搞大屏的小北

DataEase Metabase 数据可视化工具对比 对比

什么是云渲染?云渲染速度快吗?

Renderbus瑞云渲染农场

云渲染 云渲染是什么 云渲染速度快吗

DataEase数据集定时同步任务报错解决

搞大屏的小北

异常 报错 DataEase 数据集定时同步任务

大规模 Kubernetes 集群故障注入的利器-ChaosBlade

阿里巴巴中间件

阿里云 Kubernetes 云原生 ChaosBlade

联邦学习全球首个工业级开源框架FATE完成重大更新:全球首次支持纵向联邦神经网络算法_AI&大模型_Geek_684d95_InfoQ精选文章