10 月 23 - 25 日,QCon 上海站即将召开,现在购票,享9折优惠 了解详情
写点什么

联邦学习全球首个工业级开源框架 FATE 完成重大更新:全球首次支持纵向联邦神经网络算法

  • 2020-01-19
  • 本文字数:1742 字

    阅读完需:约 6 分钟

联邦学习全球首个工业级开源框架FATE完成重大更新:全球首次支持纵向联邦神经网络算法

近两年来,联邦学习发展迅速,其作为分布式的机器学习范式,能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,从技术上打破数据孤岛,实现 AI 协作。而 FATE 作为联邦学习全球首个工业级开源框架,支持联邦学习架构体系,为机器学习、深度学习、迁移学习提供了高性能联邦学习机制。此外,其自身还支持多种多方安全计算协议,如同态加密、秘密共享、哈希散列等,具有友好的跨域交互信息管理方案。


近日,全球首个联邦学习工业级开源框架 FATE 1.2 版本正式发布,在该版本中,FATE 推出了两大重量级的更新项,分别为对纵向联邦 DNN 的支持以及对多方安全计算 SPDZ 协议的支持。作为首个支持纵向联邦神经网络算法的版本,开发者在纵向联邦建模的分类、回归、排序等场景下都可以明显感受到其支持性。而 SPDZ 秘密共享安全计算协议的的支持,进一步拓展和丰富了 FATE 的应用场景。


在之前的 1.0 大版本中,FATE 上线了首个可视化联邦学习产品与联邦 pipeline 生产服务。而在 1.1 大版本中,FATE 联合 VMware 中国研发开放创新中心云原生实验室联合发布了 KubeFATE 项目,通过把 FATE 的所有组件用容器的形式封装,实现了使用 Docker Compose 或 Kubernetes(Helm Charts)来部署。前两个版本分别在可视化使用体验及部署体验上做了重点提升,而 FATE v1.2 版本则回归至算法本身,进一步拓展其支持性。除两大重量级更新项以外,还新增了如二阶优化方法-纵向 SQN、数据管理模块等功能,前者能够显著提升纵向逻辑回归和纵向线性回归收敛效率,对算法加速起到关键作用。后者则用于记录 upload 的数据表及 Job 运行中模型的输出结果,并提供查询以及清理 CLI,项目已开源在GitHub上。

FederatedML: 开启纵向联邦深度学习和多种多方安全计算协议支持之旅

在 FATE 1.2 版本中,首次对外发布了纵向联邦深度学习框架,开启了 FATE 对深度学习联邦化的支持,开发者可以自定义深度神经网络结构。目前版本已支持 Tensorflow, 后续会推出 PyTorch 版本,便于开发者低代价迁移 Tensorflow 和 Pytorch 的使用习惯和经验。


在这一版本中,FATE 实现了 SPDZ 秘密共享多方安全计算协议的支持,这意味在现有同态加密协议的基础上,FATE 能为开发者提供更多样化的多方安全计算协议支持。开发者们可根据自身算法的特点,自由选择适合自身算法的多方安全计算协议,联邦学习的可应用范围得到进一步拓展。值得说明的是,在纵向皮尔逊特征相关性计算算法实现中,首次使用了 SPDZ 协议。


此外,算法性能优化方面, 新版本也首次引入二阶优化算法,提出了纵向 SQN 算法,并成功应用在纵向广义线性模型中,对算法性能有显著提升。特征分箱和特征选择新增对多方 host 联邦建模的支持,开始全方位的支持多 host 场景。

FATE-Board:两大可视化支持,实用性再提升

自 1.0 版本推出 FATE-Board 以来,这一产品受到了开发者广泛好评。而在 1.2 版本中,FATE 也对 FATE-Board 再次进行了提升,新增了对联邦模式下特征相关性、以及 LocalBaseline 组件的可视化支持。前者能够直观地分析特征之间的相关性分布情况,从而帮助开发者快速进行判断与特征选择。而后者则可以让开发者将基于联邦训练的模型与基于 sklearn 训练的模型结果进行直接对比,并从可视化报告对比中得出相关结论。


此外,这一版本的 FATE-Board 在用户体验方面也有了重大的提升,如工作流、模型输出图表图形、评估曲线等,都高度优化了可视化效果及交互操作,并增强了实用性。在使用中相信能让开发者体验再上一层楼。

FATE-Flow:FATE 数据管理模块,开启数据治理之路

在 FATE 1.2 版本中,FATE 新增加了数据管理模块,这将成为开启数据治理的第一步。从这一版本开始,在整个 Job 生命周期产生的数据都有迹可循了。此外,数据管理模块提供了诸如查询、删除等常用管理命令,这也极大地增强了开发者对数据的掌控能力。


总的来说,FATE 在 1.2 这一版本中,开启了对新领域的进一步拓展。无论是对纵向联邦深度学习框架,还是多方安全计算 SPDZ 协议的支持,都是在打磨底层框架,为未来 FATE 能支持更多应用场景提供一种可能。从这一版本也可以看出,除新功能外,FATE 对已有建模组件也在持续不断的优化和改进,致力于在效率,多样性和实用性上,为开发者提供更加优质的服务体验。


详情可查阅 FATE官网项目贡献者指南。


2020-01-19 09:442661

评论

发布
暂无评论
发现更多内容

万字文肝Python基础知识

ベ布小禅

8月日更

有书香气的七夕节

箭上有毒

8月日更

【Flutter 专题】66 图解基本约束 Box (一)

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 8月日更

从0开始的TypeScriptの七:函数

空城机

typescript 大前端 8月日更

架构实战营 毕业设计:设计电商秒杀系统

Ahu

【设计模式】中介者模式

Andy阿辉

C# 后端 设计模式 8月日更

python-类,对象--》多态,封装,继承

加里都好

Python

前端之算法(四)快速排序

Augus

算法 8月日更

【自驱型成长】——控制感

LeifChen

压力 控制感 8月日更 自驱型成长

https 与 http 区别

一个大红包

8月日更

配置Flink流式应用(九)

Databri_AI

flink Kubernetes YARN

在线日期计算器

入门小站

工具

【Vue2.x 源码学习】第三十五篇 - 组件部分 - Vue.component 实现

Brave

源码 vue2 8月日更

Android开发:Android Studio插件GsonFormat根据Json自动生成javabean的方法

三掌柜

8月日更 8月

手撸二叉树之二叉树的堂兄弟节点

HelloWorld杰少

数据结构与算法 8月日更

持久层Mybatis中对于SQL注入的问题,聊聊你的想法?

卢卡多多

SQL优化 8月日更

Seata搭建与分布式事务入门

码农参上

SpringCloud spring cloud alibaba seata 8月日更

架构训练营毕业总结

Neil43

架构训练营

MySQL 系列教程之(四)MySQL 中的数据类型

若尘

MySQL 数据库 8月日更

梳理会在Scrum中是活动还是事件?——《Scrum指南》重读有感(6)

Bruce Talk

Scrum 敏捷 随笔 Agile

Web框架Gin | Gin 中间件

xcbeyond

Go 语言 gin gin-middleware 8月日更

Linux之rcp命令

入门小站

Linux

QDS04 TensorFlow

耳东@Erdong

tensorflow 8月日更 qds

JavaScript继承的实现方式:原型语言对象继承对象原理剖析

zhoulujun

JavaScript

部署MinIO存储服务的四种方式

liuzhen007

8月日更

模式包括问题和解决方案

escray

学习 极客时间 如何落地业务建模 8月日更

「让我们一起Golang」让协程自己kill自己

Regan Yue

协程 Go 语言 8月日更

crudapi增删改查接口零代码产品成功案例之商会联盟卡项目

crudapi

Java Vue 零代码 crudapi qusar

毕业设计:电商秒杀系统

唐高为

Git 应该用 fetch 还是 pull

HoneyMoose

实战架构训练营总结

贯通

#架构实战营

联邦学习全球首个工业级开源框架FATE完成重大更新:全球首次支持纵向联邦神经网络算法_AI&大模型_Geek_684d95_InfoQ精选文章