写点什么

推荐算法综述(五)

  • 2016-02-01
  • 本文字数:1877 字

    阅读完需:约 6 分钟

【编者的话】近年来社交媒体已经越来越流行,可以从中获得大量丰富多彩的信息的同时,也给我们带来了严重的“信息过载”问题。推荐系统作为缓解信息过载的最有效方法之一,在社交媒体中的作用日趋重要。区别于传统的推荐方法,社交媒体中包含大量的用户产生内容,因此在社交媒体中,通过结合传统的个性化的推荐方法,集成各类新的数据、元数据和清晰的用户关系,产生了各种新的推荐技术。本文总结了推荐系统中的几个关键研究领域,进行综述介绍。本文是推荐算法综述的最后一部分。第一部分主要介绍了推荐算法的主要类型。第二部分,主要涵盖了不同类型的协同过滤算法,突出他们之间的一些细微差别。第三部分详细介绍了基于内容的过滤算法。第四部分主要介绍了混合引荐技术和基于流行度的推荐方法。在这篇文章中,我们在回顾了所有基本的推荐算法之后,介绍了如何选择最合适的推荐算法。

注:本文翻译自 Building Recommenders ,InfoQ 中文站在获得作者授权的基础上对文章进行了翻译。

正文

本文是推荐算法综述的最后一部分。第一部分主要介绍了推荐算法的主要类型。第二部分,主要涵盖了不同类型的协同过滤算法,突出他们之间的一些细微差别。第三部分详细介绍了基于内容的过滤算法。第四部分主要介绍了混合引荐技术和基于流行度的推荐方法。在这篇文章中,我们在回顾了所有基本的推荐算法之后,介绍了如何选择最合适的推荐算法。

除了我们已经介绍的一些比较传统的推荐系统(例如流行度、协同过滤、基于内容的过滤、混合方法),目前还有许多的其他方法也可以用于增强推荐系统,包括:

  • 深度学习
  • 社会化推荐
  • 学习排序
  • 多臂 Bandit(探索 / 利用)
  • 张量因子分解和因子分解(情境感知的推荐)

这些更先进的和非传统的方法有利于将推荐系统的性能推高到一个新的水平,但实际上这些算法也存在不足,不太易于理解,而且在推荐插件中并没有很好地被支持。在实际应用中,相比一些更传统的方法而言,用户还需要考量执行更新的方法所带来的性能提升是否值得算法所花费的开销。根据我们的经验,基本的传统算法还将在实际系统中应用很久,并还将驱动一些伟大的产品的诞生。

在这个综述的系列文章中,我们想向读者介绍一些常见的推荐算法,包括基于用户的协同过滤算法、基于 item 的协同过滤算法、基于内容的过滤算法和混合方法。在这里,我们通过举一个简单的例子,提供了一个综合的阐述,当有相同的输入数据时,这四种不同的算法将为相同的用户产生如何不同的推荐结果(图 1)。在算法被应用到大的、真实的数据中时,这种差异会一直存在,所以在决定要使用哪种算法时需要考虑它们的优点和缺点,并且在评价它们的时候,还要考虑它们执行的好坏程度。

(点击放大图像)

图1:四种推荐系统算法被应用到相同的数据集时所产生的不同的推荐结果。在左边,我们以矩阵的形式给出了用户对于几个item 的偏好,以及要推荐的item 的标题列表。在中间,我们给出了四种不同的算法为第一个用户(即用户偏好矩阵中的第一行)所产生的推荐结果。按照显示的相似度度量,它们在相似度上有不同的定义。在右边,我们看到由每个推荐算法推荐的item,从上到下按照四种算法排序。

在实际应用中,如果你利用协同过滤算法作为你的推荐模型,一般不会出什么问题。协同过滤容易比其他算法产生更好的结果,但是它不能很好地处理新用户和新item 的冷启动问题,如果要处理这些问题,基于内容的推荐算法是一个很好的备选。如果你有时间,那么可以将这些方法进行组合,这样你就可以同时利用协同过滤算法和基于内容的推荐算法的优点。即使需要考察更为先进的推荐算法,在此之前,先好好考虑一下这些基本的算法也不失为一个好主意。

最后,需要紧紧牢记的是,推荐模型仅仅是推荐系统五个部件中的其中一个。付出努力将推荐模型正确建立起来是非常重要的,但是对于其他的所有部件,如数据收集和处理、后处理、在线模块和用户界面,做出正确的选择同样重要。正如我们一遍又一遍所强调的,该推荐算法仅仅是推荐系统中的一部分,你的决策需要考虑整个产品。

本文是一篇翻译稿,读者也可以参考英文原文

编后语

《他山之石》是InfoQ 中文站新推出的一个专栏,精选来自国内外技术社区和个人博客上的技术文章,让更多的读者朋友受益,本栏目转载的内容都经过原作者授权。文章推荐可以发送邮件到editors@cn.infoq.com。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-02-01 16:526251
用户头像

发布了 268 篇内容, 共 122.4 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

服务器的升级,不可避免的安全问题

九河云安全

2021全球开源技术峰会|IoT 时代的开源数据基础设施

EMQ映云科技

开源 IOT Platform IoT emq 开源技术

Python代码阅读(第4篇):过滤掉列表中的唯一值

Felix

Python 编程 Code Programing 阅读代码

限12小时删!白嫖对标阿里P5—P8的Java学习路线+大厂刷题秘籍

Java架构追梦

Java 阿里巴巴 架构 面试

如何保存数据并更快地从勒索软件攻击中恢复

九河云安全

在阿里晋升3次,5年拿下P8岗位,这份pdf记录了我的整个成长过程

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

赛迪发布《2020-2021年中国IT服务市场研究年度报告》,联想位居第一梯队

科技大数据

科技互联网

这本“算法宝典”讲得透彻,完全掌握后,我竟拿到字节跳动offer

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

专业好用的数据恢复软件推荐

淋雨

EasyRecovery 文件恢复 硬盘数据恢复

九大核心专题,630页内容,熬夜23天吃透,我收割了3个大厂offer

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

防止数据丢失和减轻勒索软件攻击的 5 种方法

九河云安全

632页!我熬夜读完这份“高分宝典”,竟4面拿下字节跳动offer

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

巨头纷纷布局分布式云,一场新的云战争即将打响

云计算

CC挖矿系统源码开发

获客I3O6O643Z97

挖矿 挖矿矿池系统开发案例 fil矿机

只需6步,教你从零开发一个签到小程序

华为云开发者联盟

小程序 App 移动 智慧校园 FunctionGraph

你的工作有弹性么?

escray

学习 极客时间 朱赟的技术管理课 8月日更

如何实时打通数据孤岛?Tapdata 创始人唐建法受邀于GOTC深度分享

tapdata

数据库 打通数据孤岛 数据同步 Real Time DaaS GOTC

【Vue2.x 源码学习】第二十七篇 - Vue 生命周期的实现

Brave

源码 vue2 8月日更

三面阿里被挂,竟获内推名额,历经5面拿下口碑offer(Java后台)

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

论 Erda 的安全之道

尔达Erda

云原生 安全 企业数字化转型 云平台 开发平台

TrafficStatsRunnable 实用封装

Changing Lin

8月日更

2021第二届云原生编程挑战赛正式启动,抢先报名!

阿里巴巴云原生

阿里云 Serverless RocketMQ 云原生 dubbo

基于香港服务器的应用开发中测试数据管理的 3 个最佳实践

九河云安全

50 亿观众的 “云上奥运”,顶级媒体背后的数智化力量

阿里云视频云

阿里云 直播技术 视频制作 视频云 奥运

快来看,大数据两地三中心的容灾也可以如此省心!

华为云开发者联盟

大数据 数据湖 容灾 华为云MRS 两地三中心

这几个棘手的面试常见问题,如何高情商的回答?

架构精进之路

面试 情商 8月日更

推动数据中心行业的“水电煤”,可视化如何用数据改变传统产业?

一只数据鲸鱼

机房 数据可视化 数字孪生 智能IDC

阿里云-云开发平台入门篇——静态网站的全生命周期实战

若尘

阿里云 8月日更

iOS开发-为 iOS 编写 Kotlin Parcelize 编译器插件

iOSer

ios 编译器 编译器原理 iOS 知识体系 Kotlin Parcelize

Mysql读写锁保姆级图文教程

华为云开发者联盟

MySQL 数据 读写锁 读锁 MyLSAM

Serverless 全能选手,再添一“金”

Serverless Devs

Serverless 互联网 云原生

推荐算法综述(五)_语言 & 开发_张天雷_InfoQ精选文章