写点什么

推荐算法综述(一)

  • 2015-12-22
  • 本文字数:2172 字

    阅读完需:约 7 分钟

【编者按】推荐系统在各种系统中广泛使用,推荐算法则是其中最核心的技术点,InfoQ 接下来将会策划系列文章来为读者深入介绍。推荐算法综述分文五个部分,本文作为第一篇,将会简要介绍推荐系统算法的主要种类。其中包括算法的简要描述、典型的输入、不同的细分类型以及其优点和缺点。在第二和第三篇中,我们将会详细介绍这些算法的区别,让你能够深入理解他们的工作原理。

注:本文翻译自 Building Recommenders ,InfoQ 中文站在获得作者授权的基础上对文章进行了翻译。

为推荐系统选择正确的推荐算法是非常重要的决定。目前为止,已经有许多推荐算法可供选择,但为你需要解决的特定问题选择一种特定的算法仍然很困难。每一种推荐算法都有其优点和缺点,当然也有其限制条件,在作出决定之前,你必须要一一考量。在实践中,你可能会测试几种算法,以发现哪一种最适合你的用户,测试中你也会直观地发现它们是什么以及它们的工作原理。

另外,想迅速了解并掌握推荐系统的同学,可以购买极客时间出品的『推荐系统三十六式』专栏,作者在推荐系统方面有 8 年的经验,为推荐系统学习者架构起整体的知识脉络,并在此基础上补充实践案例与经验,力图解决系统起步阶段 80% 的问题。

推荐系统算法通常是某类推荐模型的实现,它负责获取数据,例如用户的喜好和可推荐项的描述,以及预测给定的用户组会对哪些选项感兴趣。

推荐算法通常被分为四大类(1-4):

  • 协同过滤推荐算法
  • 基于内容的推荐算法
  • 混合推荐算法
  • 流行度推荐算法

除了这些种类以外,还有一些高级非传统的推荐算法(5)。

推荐算法综述是分文五个部分的系列文章,本文作为第一篇,将会简要介绍推荐系统算法的主要种类。其中包括算法的简要描述、典型的输入、不同的细分类型以及其优点和缺点。在第二和第三篇中,我们将会详细介绍这些算法的区别,让你能够深入理解他们的工作原理。系列文章中的一些内容参考了一篇来自 RecSys 2014 tutorial 的文章:由 Xavier Amatriain 编写的 The Recommender Problem Revisited

1. 协同过滤推荐算法

  • 简介:通过在用户的一系列行为中寻找特定模式来产生用户特殊推荐

  • 输入:仅仅依赖于惯用数据(例如评价、购买、下载等用户偏好行为)

  • 类型:

    • 基于邻域的协同过滤(基于用户和基于项)
    • 基于模型的协同过滤(矩阵因子分解、受限玻尔兹曼机、贝叶斯网络等等)
  • 优点:

    • 需要最小域
    • 不需要用户和项
    • 大部分场景中能够产生足够好的结果
  • 缺点:

    • 冷启动问题
    • 需要标准化产品
    • 需要很高的用户和项的比例(1:10)
    • 流行度偏见(有长尾的时候表现不够好)
    • 难于提供解释

2. 基于内容的推荐算法

  • 简介:向用户推荐和其过去喜欢项的内容(例如元数据、描述、话题等等)相似的项

  • 输入:仅仅依赖于项和用户的内容 / 描述(除了惯用数据)

  • 类型:

    • 信息检索(例如 tf-idf 和 Okapi BM25)
    • 机器学习(例如朴素贝叶斯、支持向量机、决策树等等)
  • 优点:

    • 没有冷启动问题
    • 不需要惯用数据
    • 没有流行度偏见,可以推荐有罕见特性的项
    • 可以使用用户内容特性来提供解释
  • 缺点:

    • 项内容必须是机器可读的和有意义的
    • 容易归档用户
    • 很难有意外,缺少多样性
    • 很难联合多个项的特性

3. 混合推荐算法

  • 简介:综合利用协同过滤推荐算法和基于内容的推荐算法各自的优点同时抵消各自的缺点

  • 输入:同时使用用户和项的内容特性与惯用数据,同时从两种输入类型中获益

  • 类型:

    • 加权
    • 交换
    • 混合
    • 特性组合
    • 案列
    • 特征增强
    • 元层次
  • 优点:

    • 由于单独使用协同过滤推荐算法和基于内容的推荐算法
    • 没有冷启动问题
    • 没有流行度偏见,可推荐有罕见特性的项
    • 可产生意外,实现多样性
  • 缺点:

    • 需要通过大量的工作才能得到正确的平衡

4. 流行度推荐算法

  • 简介:这是一种推荐流行项的方法 (例如最多下载、最多看过、最大影响的项)

  • 输入:使用惯用数据和项的内容(例如类目)

  • 优点:

    • 相对容易实现
    • 良好的基准算法
    • 有助于解决新用户冷启动问题
  • 缺点:

    • 需要标准化产品
    • 经常需要一些项的类型进行分类
    • 不会推荐新项(很少有机会被观测到)
    • 推荐列表不会改变太大

5. 高级非传统推荐算法

  • 类型:

    • 深度学习
    • 学习等级
    • Multi-armed bandits(探索 / 开发)
    • 上下文感知推荐
    • 张量分解
    • 分解机
    • 社会推荐
  • 优点:

    • 利于勉强维持最终性能百分点
    • 你可以说你正在使用渐进的方式
  • 缺点:

    • 难于理解
    • 缺乏推荐工具支持
    • 没有为你的首个推荐系统提供推荐的方式

查看英文原文: Overview of Recommender Algorithms – Part 1

关于作者

Maya Hristakeva 是 Mendeley 和 RELX 团队的首席数据科学家,致力于创建能够帮助研究者连接他们的研究和合作者的工具。她本人的研究领域是可扩展的机器学习、推荐系统和优化算法。她也对端对端的构建数据产品过程感兴趣:从算法到好的用户体验。

Kris Jack 是 Mendeley 的首席数据科学家,同时也是 RELX 团队的数据科学家的负责人。他热衷于创造能够帮助人们理解和传达复杂信息以及做出新发现的软件。他的主要研究兴趣在于推荐系统、信息检索、信息抽取、机器学习、人工智能等等。他还热衷于将技术转化为真正对用户有用的产品以及参与能够创造奇迹的团队。

Maya 和 Kris 共同为世界创建出了一些出色的推荐系统。他们最新的产品是给研究员使用的推荐系统:Mendeley Suggest。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2015-12-22 17:1944993
用户头像

发布了 32 篇内容, 共 21.2 次阅读, 收获喜欢 8 次。

关注

评论

发布
暂无评论
发现更多内容

2024年游戏买量应该怎么玩?

FinFish

小程序容器 游戏买量 小游戏技术 快平台游戏买量

【CCE Autopilot专栏】资源成本降低60%,Serverless的省钱秘籍

华为云原生团队

云计算 容器 云原生

测试热招职位技能要求拆解公开课 — 开启你的软件测试进阶之路

测试人

软件测试

无需公网IP,贝锐花生壳内网穿透实现APP服务端API快速接入

贝锐

内网穿透 API 性能测试

Web3 游戏周报(10.13 - 10.19)

Footprint Analytics

链游

租用海外云手机应注意些什么?

Ogcloud

云手机 云手机群控 云手机推荐 云手机养号 跨境电商运营

几行代码带你用TinyEngine低代码引擎开发侧边栏插件

华为云开发者联盟

开源 前端开发 低代码 TinyEngine

谁说Linux不能玩游戏!deepin 23 通通拿下,超详细游戏教程合集!

nn-30

Linux 操作系统 游戏 deepin 黑神话悟空

Meta 最新 SPIRIT-LM:语音文本无缝转换还能懂情绪;字节回应实习生破坏大模型训练:网传损失不实丨 RTE 开发者日报

RTE开发者社区

数造科技荣获2024DAMA中国“数据治理创新奖”

数造万象

人工智能 大数据 数据治理 科技 数据管理

一文读懂什么是数据即产品(Data as a Product,DaaP)

tapdata

数据即产品DaaP 企业数据战略 数据产品与数据服务 数据治理与合规 元数据管理与数据血缘

Web网页端IM产品RainbowChat-Web的v7.2版已发布

JackJiang

即时通讯;IM;网络编程

喜报!Bonree ONE荣膺GOITI首个“可观测性领域年度明星产品奖”

博睿数据

拼多多商品详情数据接口使用方法

tbapi

拼多多商品详情接口 拼多多API

华为云架构师深度解读Volcano云原生混部解决方案

华为云开发者联盟

云原生 Volcano 资源调度

望繁信科技荣获2022年度创新产品与解决方案大奖

望繁信科技

数字化转型 流程挖掘 流程资产 流程智能 数字北极星

一文彻底弄懂MySQL的MVCC多版本控制器

不在线第一只蜗牛

MySQL

东北三省鸿蒙生态加速落地,150余款鸿蒙原生应用上架,多家政企内部办公应用启动鸿蒙化

最新动态

低代码平台助力医疗业实现业务优化与合规管理:全面提升运营效率

天津汇柏科技有限公司

低代码平台

探索阿里巴巴中国站商品详情API返回值的多样性

技术冰糖葫芦

API Explorer API 文档 API 测试 API 性能测试

API自动化测试平台:企业API管理的得力助手

谷云科技RestCloud

API接口 ipaas api自动化 api自动化测试平台

NFTScan | 10.14~10.20 NFT 市场热点汇总

NFT Research

NFT\ NFTScan

数据库运维实操优质文章文档分享(含Oracle、MySQL等) | 2024年9月刊

墨天轮

MySQL 数据库 oracle postgresql 国产数据库

MoE++: 颜水成团队与北大袁粒团队推出新一代MoE架构,专家推理速度倍增,性能全面提升

新消费日报

推荐算法综述(一)_语言 & 开发_百占辉_InfoQ精选文章