写点什么

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型

阿里巴巴

  • 2023-06-28
    北京
  • 本文字数:1720 字

    阅读完需:约 6 分钟

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型

大语言模型(LLM)是当前自然语言处理领域最核心的技术,以 GPT-4 为代表的大语言模型展现出了类人的学习能力。其中,情境学习(In-context Learning)是大语言模型最神秘的能力之一。如下图所示,在这种情境学习的范式下,大模型无需更新任何参数,仅依赖几个示例样本(demonstrations)就可以学习新任务,执行新样本的预测。



得益于这种范式的存在,使得大模型可以仅通过修改指令(prompt)和示例 (demonstrations)就在某个具体任务上达到不错的效果,然而当前的情境学习仅通过输入一次示例的方式来进行任务的归纳与推理,存在很大的局限。首先,这种单轮的策略与人类类比学习的决策过程并不一致。

 

在认知学中,人类通常通过迭代式的思维过程(例如,分析示例、反思示例和形成抽象概念)执行类比学习。可以考虑让大模型通过“思考更长时间”或者“多次思考”,来提升情境学习的能力。其次,一些相关工作指出,情境学习与传统神经网络训练的梯度下降有潜在的联系,一次大模型前向的过程完成了一次隐式的梯度下降,可以看作执行了一次训练。这进一步表明,可以通过多次(迭代)前向训练演示来提高情境学习的效果,让大模型和人类一样,拥有深度思考的过程。



阿里首创前向训练框架


为此,阿里研究团队在《Iterative Forward Tuning Boosts In-context Learning in Language Models》论文中率先提出了一个新的大模型情境学习框架——Deep-Thinking。


论文:https://arxiv.org/abs/2305.13016

代码: https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/deep-thinking

Demo: https://modelscope.cn/studios/huybery/deep-thinking/summary

 

Deep-Thinking 与传统情境学习不同,它分为两个阶段。第一个阶段为思考阶段,仅将示例作为大模型的输入,然后通过多次迭代来让大模型进行前向“训练/思考”,模拟人类不断地观察与学习示例样本。为了做到前向训练,研究团队借助 self-attention 中的 Key, Value 矩阵作为一种“元梯度”。

 

具体来说,需要执行多个步骤优化过程。在某一次具体的优化过程中,研究团队改造 self-attention 的前向机制,对  Key, Value 矩阵执行了更新 (update) 与 合并 (concat) 操作。更新操作通过当前步骤的元梯度与历史累积到的元梯度进行积累,产生新的元梯度。而合并操作将元梯度进行合并,让网络更深层地表示受到元梯度的增益。需要强调的是,这个过程不依赖反向传播,所以能够大大地降低大模型的训练的成本。第二个阶段为推理阶段,输入待预测的样本与训练阶段产生的最终元梯度,最终执行预测。



Deep-Thinking 拥有两个优势,一方面通过第一阶段的思考可以有效提升下游任务的效果,另一方面,在第二阶段预测时仅需要输入预测的样本与第一阶段学习的产物(K,V 矩阵),无需输入大量的自然语言示例,可以有效节约显存并提升推理速度。


效果


为了评估 Deep-Thinking 相比传统情景学习的优势,该团队评测四种 LLM 的不同尺寸,共 20 个模型在 10 个数据集上的效果,发现都有较好的提升,在某些情况下甚至能得到几十个点的相对提升。



除了定量的评估外,该团队还执行了一些有趣的分析,Deep-thinking 的优化过程和传统的梯度下降优化展现出了一系列有趣的现象:首先,Deep-thinking 也存在类似过拟合的现象,如果迭代过程过多,将会导致效果下降,可以通过引入小规模的验证集来选择合适的迭代次数,这与传统优化中的 Epoch 概念类似;其次,Deep-thinking 的梯度范式也呈现出了与梯度下降相同的趋势,比如更浅的层收敛更快,对学习率敏感等。



展望


传统的模型优化依赖于反向传播算法,但这种方法需要大量的计算资源和庞大的数据集,使得大模型的训练与微调成本非常高昂,成为大模型落地的阻碍之一。

 

而阿里研究团队提出的 Deep-thinking 是一种迭代式的前向训练框架,摒弃了反向传播的依赖,这将允许用户和企业在具体的任务上低成本的优化大模型效果。企业往往需要保护用户数据的安全性,但同时也需要让模型具备针对特定任务的学习能力。利用 Deep-thinking ,企业可以在不共享大量数据的前提下,根据自身需求快速训练和优化专属模型。这对于提高模型的个性化适应性和隐私保护具有重要意义,这项技术有潜力成为大模型落地的最佳实践。

2023-06-28 17:334552
用户头像
赵钰莹 极客邦科技 总编辑

发布了 897 篇内容, 共 685.6 次阅读, 收获喜欢 2696 次。

关注

评论

发布
暂无评论
发现更多内容

Trending热榜关闭前,我把Github今年最火Java面试题汇总扒下来了

Geek_0c76c3

Java 数据库 开源 程序员 开发

Apache APISIX 集成 Elasticsearch 实现实时日志监控

API7.ai 技术团队

elasticsearch API网关 APISIX 网关

如何使用游戏引擎进行实时渲染和内容创建

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

OptaPlanner快速入门-概述

积木编程

软件测试 | 测试开发 | Thinkphp5 集成 Swoole

测吧(北京)科技有限公司

测试

全方位助力数据科学组织协同&个人研究:ModelWhale 产品功能介绍与版本选择指引

ModelWhale

云计算 科技 数据科学 编程建模 组织协同

开发者有话说|刚毕业的“00后”,歪打误撞进入了SAP行业

暮春零贰

个人成长 9月月更

一加是OPPO的子品牌?我来说说我的看法

Geek_8a195c

为什么3D实时渲染很重要

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

企业IT运维开发一体化解决方案

力软低代码开发平台

IDC发布《中国边缘云市场解读(2022)》:阿里云蝉联中国公有云市场第一

阿里云CloudImagine

边缘计算 公有云 边缘云

软件测试 | 测试开发 | 相似图像的检测方法

测吧(北京)科技有限公司

测试

专访美象科技|中国数字孪生50强为何需要3DCAT实时渲染云的赋能?

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

好的,BFS,学会了

掘金安东尼

前端 9月月更

全网首发!马士兵内部共享—1658页《Java面试突击核心讲》

Geek_0c76c3

Java 数据库 开源 程序员 开发

当下企业数字化转型,PaaS是基础解

ToB行业头条

面试整理的45W字Java真题和答案详解(含核心考点及6家大厂真题)

Geek_0c76c3

Java 数据库 开源 程序员 开发

Baklib+伙伴云+企微会话存档,打造伙伴云帮助中心运营体系

Baklib

软件测试 | 测试开发 | 堆排序原理及实现

测吧(北京)科技有限公司

测试

Vue3入门指北(五)条件渲染

Augus

Vue 3 9月月更

哪7个场景影响研发效能?

LigaAI

敏捷 LigaAI 企业号九月金秋榜 #敏捷开发 #程序

为了进大厂!吃透了各大厂最新 3000+Java 面试题啃完面试肯定妥了

Geek_0c76c3

Java 开源 程序员 架构 开发

什么是实时渲染,3D实时渲染的优缺点

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

软件测试 | 测试开发 | 提高Android云真机稳定性的方法

测吧(北京)科技有限公司

测试

Java岗史上最全八股文面试真题汇总,堪称2022年面试天花板

Geek_0c76c3

Java 数据库 开源 程序员 开发

华为应用市场审核指南解读课程上线,面向开发者讲解应用审核2022年更新要点

最新动态

ESP32-C3 学习测试 蓝牙 篇(三、认识蓝牙 GATT 协议)

矜辰所致

蓝牙 ESP32-C3 9月月更 GATT

借助iMazing工具重新安装或升级 iOS系统

淋雨

ios iphone

软件测试 | 测试开发 | Tornado 异步性能分析

测吧(北京)科技有限公司

测试

一文读懂TDengine的三种查询功能

TDengine

数据库 tdengine 时序数据库 企业号九月金秋榜

ESP32-C3 学习测试 蓝牙 篇(二、蓝牙调试APP、开发板手机连接初体验)

矜辰所致

ESP32-C3 9月月更 蓝牙APP

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型_阿里巴巴_InfoQ精选文章