在 2025 收官前,看清 Data + AI 的真实走向,点击查看 BUILD 大会精华版 了解详情
写点什么

机器学习与 JavaScript(一)

  • 2017-07-03
  • 本文字数:3149 字

    阅读完需:约 10 分钟

你应该觉得基于 JavaScript 的机器学习不简单吧。

JAVASCRIPT?!我难道不应该用 Python 么?我难道要用 JavaScript 去做如此复杂的运算?难道我不应该使用 Python 或者 R 语言么?scikit-learn 算法库会不会不能在 JavaScript 中使用?简单来说:基于 JavaScript 的机器学习完全没有问题。

详细来讲,基于 JavaScript 的机器学习是有可能的,并且我总是很吃惊为什么开发者们没有给予它应有的关注。就 scikit-learn 算法库而言,JavaScript 开发者已经开发了一系列实现该算法的库,一会儿就会用到一个库。接下来会先讲一点机器学习的知识,然后就放松心情一起来看代码吧。

据 Arthur Samuel 所讲,机器学习就是在不对其进行具体编程的情况下,使计算机拥有学习的能力。换句话说,它在我们不操作计算机的情况下,却能拥有自我学习的能力,并能执行正确的指令。并且谷歌公司已经将策略从移动优先转变为 AI 优先很长一段时间了。

为什么在机器学习领域没有提到 JavaScript 呢?

  1. JavaScript 很慢。(完全错误的观念 !?! )
  2. JavaScript 很难进行矩阵操作。(但是有很多库的,比如 math.js )
  3. JavaScript 仅仅被认为是用来做 web 开发的。(Node.js默默的笑了)
  4. 机器学习中很多库都是基于 Python 开发的。(那是因为 JavaScript 开发者并没有在场)

现在已经有很多的 JavaScript 库了,它们已经预定义了机器学习算法,比如:线性回归、支持向量机、朴素贝叶斯算法等,以下列出了几个库:

  1. brain.js (神经网络)
  2. Synaptic (神经网络)
  3. Natural (自然语言处理)
  4. ConvNetJS (卷积神经网络)
  5. mljs (一种具有多个函数方法的子库)

我将使用 mljs 的回归库来执行线性回归模型的分析。全部代码都在 Github 上: machine-learning-with-js

第一步. 安装依赖的库

$ yarn add ml-regression csvtojson或者你更喜欢 npm:

$ npm install ml-regression csvtojsonml-regression 所做的事正如它的名字那样,机器学习线性回归库。

csvtojson 是在 node.js 环境中的一个 cvs 数据解析器,它可以在你加载完 cvs 数据后将其快速的转换为 JSON。

第二步. 初始化依赖库并加载数据

首先从这里下载数据文件,并将数据文件放在你的工程目录中。

假设你已经初始化了一个空的 npm 工程,打开 index.js 文件,并输入以下代码:(你可以直接复制 / 粘贴,但为了能够更好的理解它,建议你能亲自输入这段代码)

复制代码
const ml = require('ml-regression');
const csv = require('csvtojson');
const SLR = ml.SLR; // 简单线性回归
const csvFilePath = 'advertising.csv'; // 数据文件
let csvData = [], // 已解析的数据
X = [], // 输入
y = []; // 输出
let regressionModel;

我把这个文件放在了项目的根目录下,因此如果你放在了别的目录下,请同时更改上述代码中的 csvFilePath 变量。

这样的代码看起来相当整洁,不是么?

接下来使用 csvtojson 库的 fromFile 方法加载数据文件。

复制代码
csv()
.fromFile(csvFilePath)
.on('json', (jsonObj) => {
csvData.push(jsonObj);
})
.on('done', () => {
dressData(); //JSON 对象中获取数据点
performRegression();
});

第三步. 将数据加以装饰,以准备开始执行

保存在 csvData 变量中的 JSON 对象已经准备好了,同时还分别需要一个数组,用来存储输入点数据和输出点数据。然后将通过 dressData 函数来运行数据,且 dressData 函数将会计算出 X 和 Y 变量。

复制代码
function dressData() {
/**
* 一个数据对象应该这样:
* {
* TV: "10",
* Radio: "100",
* Newspaper: "20",
* "Sales": "1000"
* }
*
* 因此,在添加数据点的同时,
* 我们需要将 String 类型的值解析为 Float 类型。
*/
csvData.forEach((row) => {
X.push(f(row.Radio));
y.push(f(row.Sales));
});
}
function f(s) {
return parseFloat(s);
}

第四步. 训练模型,并开始进行预测

现在数据已经装饰好了,是时候来训练模型了。

为了实现这一目标,我们需要一个 performRegression 函数:

复制代码
function performRegression() {
regressionModel = new SLR(X, y); // 基于训练数据来训练模型
console.log(regressionModel.toString(3));
predictOutput();
}

regressionModel 有一个 toString 方法,它所接收的参数代表输出值浮点数的精度。

predictOutput 方法能够接收所输入的值,并且向终端输出所预测的值。

以下就是这个函数的代码:(这里使用了 node.js 的 readline 模块)

复制代码
function predictOutput() {
rl.question('Enter input X for prediction (Press CTRL+C to exit) : ', (answer) => {
console.log(`At X = ${answer}, y = ${regressionModel.predict(parseFloat(answer))}`);
predictOutput();
});
}

以下代码读取了用户的输入值:

复制代码
const readline = require('readline'); // 同时预测用户的输入值
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});

第五步. 恭喜你!做到了。

如果你跟着我一步一步的做,现在你的 index.js 文件应该是这样子的:

复制代码
const ml = require('ml-regression');
const csv = require('csvtojson');
const SLR = ml.SLR; // 简单线性回归
const csvFilePath = 'advertising.csv'; // 数据
let csvData = [], // 已解析的数据
X = [], // 输入
y = []; // 输出
let regressionModel;
const readline = require('readline'); // 同时预测用户的输入值
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
csv()
.fromFile(csvFilePath)
.on('json', (jsonObj) => {
csvData.push(jsonObj);
})
.on('done', () => {
dressData(); // 从 JSON 对象中获取数据点
performRegression();
});
function performRegression() {
regressionModel = new SLR(X, y); // 基于训练数据来训练模型
console.log(regressionModel.toString(3));
predictOutput();
}
function dressData() {
/**
* 一个数据对象应该这样:
* {
* TV: "10",
* Radio: "100",
* Newspaper: "20",
* "Sales": "1000"
* }
*
* 因此,在添加数据点的同时,
* 我们需要将 String 类型的值解析为 Float 类型。
*/
csvData.forEach((row) => {
X.push(f(row.Radio));
y.push(f(row.Sales));
});
}
function f(s) {
return parseFloat(s);
}
function predictOutput() {
rl.question('Enter input X for prediction (Press CTRL+C to exit) : ', (answer) => {
console.log(`At X = ${answer}, y = ${regressionModel.predict(parseFloat(answer))}`);
predictOutput();
});
}

打开终端,输入并运行 node index.js,它将会输出如下所示内容:

复制代码
$ node index.js
f(x) = 0.202 * x + 9.31
Enter input X for prediction (Press CTRL+C to exit) : 151.5
At X = 151.5, y = 39.98974927911285
Enter input X for prediction (Press CTRL+C to exit) :

恭喜你!刚刚用 JavaScript 训练了你的第一个线性回归模型。(你有注意到它的速度么?)

PS: 我将使用 ml 和其他的库(上面所列出的那些)在各种数据集上执行目前比较流行的机器学习算法。请时刻关注我的动态,获取最新的机器学习教程。

感谢你的阅读!如果你喜欢这篇文章的话,请为我点赞,以让别人知道 JavaScript 是多么的强大,以及为什么在机器学习领域中 JavaScript 不应该落后。

查看英文原文: Machine Learning with JavaScript : Part 1


感谢薛命灯对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-07-03 17:188734

评论

发布
暂无评论
发现更多内容

GNUCash 5: 报表

lidaobing

GNUCash 28天写作

淘宝网前期技术架构演进分析

Andy

CSS(六)——用CSS设置图像效果

程序员的时光

程序员 大前端 七日更 28天写作

一文搞懂“技术债”

李忠良

28天写作

28天瞎写的第二百三十天:DIY 键盘的故事

树上

28天写作 机械键盘 GH60

我们都很忙

Ian哥

28天写作

技术根儿扎得深,不怕“首都”狂风吹!

鲁米

操作系统

精彩的封面 | 视频号 28 天(20)

赵新龙

28天写作

浪漫主义的消亡

石君

28天写作

机器学习·笔记之:Cost Function - Intuition I

Nydia

架构师训练营知识点思维导图

晴空万里

架构师训练营第2期

进大厂必看!拼多多大佬总结的10万字Springboot经典学习笔记

武哥聊编程

Java springboot 28天写作

产品训练营-第五课

Geek_娴子

Soul 源码阅读 05|Http 长轮询同步数据分析

哼干嘛

9个REST API设计的基本准则

devpoint

APi设计 RESTf

WebPack | Loader处理非JavaScript模块机制详解

梁龙先森

JavaScript 大前端 webpack 28天写作

HDFS是如何设计架构的?

大数据老哥

关于垃圾收集器你了解多少?一文总结七大垃圾收集器

Java鱼仔

Java JVM 垃圾收集

原来酸奶是这个味道,真香!「幻想短篇 20/28」

道伟

28天写作

壁纸收藏

小马哥

摄影 七日更

记录关于写作的两个小想法

JiangX

28天写作

工程师思维是什么?能吃吗?

Justin

工程师思维 架构设计 28天写作

“复制”马斯克(一):全世界都会为“自大狂”让路吗?

脑极体

开发质量提升系列:用户体验

罗小龙

最佳实践 方法论 28天写作

nodejs的调试debug

程序那些事

debug 调试 nodejs 程序那些事 程序调试

年底跳槽之 如何找工作方向?

一笑

职业规划 28天写作

如何养成一个好习惯

熊斌

读书笔记 28天写作

Java基础--2021Java面试题系列教程--大白话解读

JavaPub

Java 面试 javapub

创业失败启示录|雨季后的明媚阳光

阿萌

28天写作 创业失败启示录

个人隐私之老话重谈

张老蔫

28天写作

模块分解 - 微服务架构认识与思考

raox

机器学习与JavaScript(一)_JavaScript_Abhishek Soni_InfoQ精选文章