写点什么

知乎 Hive Metastore 实践:从 MySQL 到 TiDB

  • 2020-09-20
  • 本文字数:2682 字

    阅读完需:约 9 分钟

知乎 Hive Metastore 实践:从 MySQL 到 TiDB

Apache Hive 是基于 Apache Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并且提供了 Hive SQL 进行查询和分析,在离线数仓中被广泛使用。


Hive Metastore 是 Hive 的元信息管理工具,它提供了操作元数据的一系列接口,其后端存储一般选用关系型数据库如 Derby、 MySQL 等。现在很多除了 Hive 之外计算框架都支持以 Hive Metastore 为元数据中心来查询底层 Hadoop 生态的数据,比如 Presto、Spark、Flink 等等。


在知乎,我们是将元信息存储在 MySQL 内的,随着业务数据的不断增长,MySQL 内已经出现单表数据量两千多万的情况,当用户的任务出现 Metastore 密集操作的情况时,往往会出现缓慢甚至超时的现象,极大影响了任务的稳定性。长此以往,MySQL 在未来的某一天一定会不堪重负,因此优化 Hive 的元数据库势在必行。


在去年,我们做过数据治理,Hive 表生命周期管理,定期去删除元数据,期望能够减少 MySQL 的数据量,缓解元数据库的压力。但是经过实践,发现该方案有以下缺点:


1、数据的增长远比删除的要快,治标不治本;


2、在删除超大分区表(分区数上百万)的分区时,会对 MySQL 造成一定的压力,只能单线程去做,否则会影响其他正常的 Hive 查询,效率极其低下;


3、在知乎,元信息删除是伴随数据一起删除的(删除 HDFS 过期数据,节约成本),Hive 的用户可能存在建表不规范的情况,将分区路径挂错,导致误删数据。


因此,我们需要寻找新的技术方案来解决这个问题。

技术选型

已有方案

业内目前有两种方案可供借鉴:


  1. 对 MySQL 进行分库分表处理,将一台 MySQL 的压力分摊到 MySQL 集群;

  2. 对 Hive Metastore 进行 Federation,采用多套 Hive Metastore + MySQL 的架构,在 Metastore 前方设置代理,按照一定的规则,对请求进行分发。


但是经过调研,我们发现两种方案都有一定的缺陷:


  1. 对 MySQL 进行分库分表,首先面临的直接问题就是需要修改 Metastore 操作 MySQL 的接口,涉及到大量高风险的改动,后续对 Hive 的升级也会更加复杂;

  2. 对 Hive Metastore 进行 Federation,尽管不需要对 Metastore 进行任何改动,但是需要额外维护一套路由组件,并且对路由规则的设置需要仔细考虑,切分现有的 MySQL 存储到不同的 MySQL 上,并且可能存在切分不均匀,导致各个子集群的负载不均衡的情况;

  3. 我们每天都会同步一份 MySQL 的数据到 Hive,用作数据治理,生命周期管理等,同步是利用内部的数据同步平台,如果采用上面两种方案,数据同步平台也需要对同步逻辑做额外的处理。

最终方案

其实问题主要在于,当数据量增加时,MySQL 受限于单机性能,很难有较好的表现,而将单台 MySQL 扩展为集群,复杂度将会呈几何倍上升。如果能够找到一款兼容 MySQL 协议的分布式数据库,就能完美解决这个问题。因此,我们选择了TiDB


TiDB 是 PingCAP 开源的分布式 NewSQL 数据库,它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL 协议,具有数据强一致的高可用特性,是一个不仅适合 OLTP 场景还适 OLAP 场景的混合数据库。


选用 TiDB 的理由如下:


  1. TiDB 完全兼容 MySQL 的协议,经过测试,TiDB 支持 Hive Metastore 对元数据库的所有增删改查操作, 使用起来不存在兼容性相关的问题。因此,除了将 MySQL 的数据原样 dump 到 TiDB,几乎没有其他工作需要做;

  2. TiDB 由于其分布式的架构,在大数据集的表现远远优于 MySQL;

  3. TiDB 的可扩展性十分优秀,支持水平弹性扩展,不管是选用分库分表还是 Federation,都可能会再次遇到瓶颈,届时需要二次切分和扩容,TiDB 从根本上解决了这个问题;

  4. TiDB 在知乎已经得到了十分广泛的应用,相关技术相对来说比较成熟,因此迁移风险可控。

Hive 架构

迁移前


其中 Zue 是知乎内部使用的可视化查询界面。

迁移后


在 Hive 的元数据库迁移到 TiDB 了以后,架构几乎没有任何变化,只不过查询的压力由单台 MySQL 节点分摊到了整个 TiDB 集群,集群越大,查询效率越高,性能提升越明显。

迁移流程

  1. 将 TiDB 作为 MySQL 的从库,实时同步数据;

  2. Metastore 缩容至 1 个,防止多个 Metastore 分别向 MySQL 及 TiDB 写入,导致元数据不一致;

  3. 选取业务低峰期,主从切换,将主切为 TiDB,重启 Metastore ;

  4. Metastore 扩容。

  5. 此迁移过程对业务几乎无感,成功上线。

运行概况

  1. 我们从 Hive 层面对数据库进行了测试,模拟业务高峰期,多并发对百万分区级别的表增删分区,所执行的 Hive SQL 如下:


   ALTER TABLE '${table_name}' DROP IF EXISTS PARTITION(...);   ALTER TABLE '${table_name}' ADD IF NOT EXISTS PARTITION(...);
复制代码


花费时间从 45s-75s 降低到了 10s 以下。


  1. 我们从元数据库层面测试了一些 Metastore 提交的 SQL,尤其是那些会造成元数据库压力巨大的 SQL,例如:


SELECT `A0`.`PART_NAME`,`A0`.`PART_NAME` AS `NUCORDER0` FROM `PARTITIONS` `A0` LEFT OUTER JOIN `TBLS` `B0` ON `A0`.`TBL_ID` = `B0`.`TBL_ID` LEFT OUTER JOIN `DBS` `C0` ON `B0`.`DB_ID` = `C0`.`DB_ID` WHERE `C0`.`NAME` = '${database_name}' AND `B0`.`TBL_NAME` = '${table_name}' ORDER BY `NUCORDER0`
复制代码


当某个 Hive 表的分区数量十分巨大时,这条 SQL 会给元数据库造成相当大的负担。迁移前,此类 SQL 在 MySQL 运行时间约为 30s - 40s,迁移后,在 TiDB 运行仅需 6s - 7s,提升相当明显。


  1. 数据同步平台上的 Hive 元数据库内的 SDS 表的同步任务时间从 90s 降低到 15s。

展望

在 Hive Metastore 的场景下,我们已经感受到了 TiDB 在大数据应用场景下的魅力。后续我们希望 TiDB 能够成为跨数据中心的服务,通过数据副本的跨机房部署,打通离线与在线,让离线场景能够在对在线服务无压力的情况下为数据提供实时的 ETL 能力,解决离线 ETL 任务实时性差的问题。为此,我们正在开发 TiBigData (https://github.com/pingcap-incubator/TiBigData)。


目前其作为 PingCAP Incubator 的孵化项目。由来自知乎的 TiKV Maintainer 孙晓光发起。PingCAP Incubator 旨在梳理一套相对完整的 TiDB 生态开源项目孵化体系,将关于 TiDB 开源生态的想法与实际生产环境中的需求相关联,通过开源项目协作方式,共同将想法落地。力求想法项目化。从「我有一个想法」到「项目顺利毕业」,PingCAP 提供一系列的资源支持,确保所有项目孵化的流程都有章可循,同时结合项目不同特征及孵化目的,将项目划分为 Feature 类和 Project 类,针对性地给出孵化流程建议。PingCAP Incubator 中的项目有:TiDB Dashboard、TiUP、TinyKV,TiDB Wasm 等。


完整项目请查看:


https://github.com/pingcap-incubator


PingCAP Incubator 完整文档参考:


https://github.com/pingcap/community/tree/master/incubator


2020-09-20 16:004473

评论

发布
暂无评论
发现更多内容

一个 println 竟然比 volatile 还好使? | 京东云技术团队

京东科技开发者

volatile JIT 企业号9月PK榜 println

火山引擎DataLeap推出两款大模型应用: 对话式检索与开发 打破代码语言屏障

字节跳动数据平台

数据中台 数据治理 数据安全 数据研发 企业号9月PK榜

如何下载和安装 Eclipse?

小齐写代码

校源行丨开放原子开源基金会赴黑龙江科技大学走访交流

开放原子开源基金会

开放原子开发者工作坊|大咖论开源项目的安全之道

开放原子开源基金会

集成开发环境(IDE)的用途?

小齐写代码

矩阵起源荣获上海科技创新资金计划项目立项资助

MatrixOrigin

数据库 云原生 HTAP MatrixOrigin MatrixOne

HarmonyOS纳入教育部“智能基座”项目,联合头部高校共育鸿蒙人才

最新动态

异常检测:探索数据深层次背后的奥秘《下篇》

汀丶人工智能

数据挖掘 机器学习 异常检测

NineData SQL 窗口现已支持深色模式,让开发者长期用眼无忧!

NineData

程序员 SQL开发 NineData

第2期 | 破局 全球项目、精智核算

用友BIP

项目管理

集成销售和收入计划,打造企业内部的协作共赢

智达方通

数据分析 智达方通 优化流程

矩阵起源荣获"2023大数据助力工业经济"年度创新产品

MatrixOrigin

数据库 云原生 HTAP MatrixOrigin MatrixOne

昇腾AI开发者创享日暨昇腾AI创新大赛2023大连区域赛成功举办

彭飞

华为云ROMA Connect行业生态联盟成立,携手共建行业软件合作新生态

华为云PaaS服务小智

云计算 华为云 应用与数据集成

20个最佳实践提升Terraform工作流程|Part 2

SEAL安全

最佳实践 IaC terrafrom 企业号9月PK榜

Embeddig技术与应用 (1) :Embedding技术发展概述及Word2Vec

Baihai IDP

人工智能 深度学习 AI Embedding 白海科技

规模化、可复制的大模型应用——企业知识管家

九章云极DataCanvas

单日 5000 亿行 / 900G 数据接入,TDengine 3.0 在中国地震台网中心的大型应用

TDengine

tdengine 时序数据库

九章云极DataCanvas公司智算中心正式落地

九章云极DataCanvas

九章云极DataCanvas公司入选人工智能融合发展与安全应用典型案例

九章云极DataCanvas

构建资产数智化平台,为央国企资产保值增值保驾护航

用友BIP

资产管理

敏捷在建设项目中的应用

ShineScrum

敏捷在建设项目

知乎 Hive Metastore 实践:从 MySQL 到 TiDB_数据库_胡梦宇_InfoQ精选文章