Data+AI时代,如何打造下一代数智平台? 了解详情
写点什么

阿里:Behavior Sequence Transformer 解读

  • 2019-12-02
  • 本文字数:1663 字

    阅读完需:约 5 分钟

阿里:Behavior Sequence Transformer 解读

背景和介绍

现在深度学习已经广泛应用到了各种 CTR 预估模型中,但是大都数模型的输入只是 concat 不同的特征,而忽视了用户历史行为本身的序列特征。比如一个用户很有可能买了苹果手机后,会买手机套,买了裤子之后会选择继续买个配套的鞋子。而之前一些模型比如 wide&deep,就没有利用用户行为历史序列中的 order information。DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但仍然未考虑用户行为序列背后的序列性质。


因此为了解决上述问题,本文尝试将 NLP 领域中大放异彩的 Transformer 模型来做推荐任务。具体:使用 self-attention 模块来学习用户行为历史序列中各个 item 的序列信息。

模型

  • 问题建模:给定一个用户 u 的行为序列:S(u) = {v1,v2, …,vn },学习一个函数 F 用于预测用户 u 点击 item vt 的概率。其它特征包括:user profile, context, item 和 cross features,如下图所示



  • 模型结构:

  • 1.Embedding Layer:左侧部分通过 embedding 层将所有的 other features 映射成固定维度的向量,然后 concat 起来。另外,该模型也将行为序列中的每个 Item(包括目标 Item)通过相同的 embedding 层映射成低维度的向量。这里需要注意的是,每个 Item 通过两部分来表示:“序列 item 特征”(红色部分)和“位置特征”(深蓝色),其中,“序列 item 特征”包括 item_id 和 category_id(item 通过包括上百个特征,但是 item-id 和 category_id 两个特征对于 performance 来说就已经够了)。位置特征用来刻画用户历史行为序列中的顺序信息,文中将“位置”作为中每个 item 的另一个输入特征,然后将其投射为低维向量。第 i 个位置的位置特征计算方式为 pos(vi)=t(vt)-t(vi),其中,t(vt) 表示推荐的时间戳,t(vi) 表示用户点击商品 vi 时的时间戳。

  • 2.Transformer layer:对于每个 item 抽取了一个更深层次的 representation,用于捕捉该 item 和历史行为序列中的其他 item 的关系。

  • Self-attention:Transformer 层中的 multi-head attention 模块输出:

  • 其中 headi 为:



self-attention 的计算公式为:



  • Point-wise Feed-Forward Network:目的是增加非线性。在 self-attention 和 FFN 中都使用了 dropout 和 LeakyReLU,最终 self-attention 和 FFN 的输出为:

  • Stacking the self-attention block:上面的两步操作被称为一个 self-attention 单元。为了抽取出 item 序列中更加复杂的潜在关联特征,该模型堆叠了几层 self-attention 单元:


  1. MLP layers and Loss function: 将所有的 embedding 进行拼接,输入到三层的神经网络中,并最终通过 sigmoid 函数转换为 0-1 之间的值,代表用户点击目标商品的概率。loss 函数:


实验结果

其中,b 表示 Transformer 的 block 堆叠的层数,论文里实验了 1 层、2 层和 3 层的效果,最终 1 层的效果最好。

总结

DIN、DIEN、DSIN 和本文 BST 模型的区别和联系


DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但是未考虑用户行为序列背后的序列性质,并且未捕捉用户兴趣的动态变化性。


DIEN 主要解决 DIN 无法捕捉用户兴趣的动态变化性的缺点,提出了兴趣抽取层 Interest Extractor Layer、兴趣进化层 Interest Evolution Layer。


DSIN 针对 DIN 和 DIEN 没考虑用户历史行为中的会话信息,因为在每个会话中的行为是相近的,而在不同会话之间差别是很大的。DSIN 主要是在 session 层面上来利用用户的历史行为序列信息。


BST 模型通过 Transformer 模型来捕捉用户历史序列中各个 item 的关联特征,并且通过加入待推荐的商品 item,也可抽取出行为序列中商品与待推荐商品之间的相关性。


参考文献:


Behavior Sequence Transformer for E-commerce Recommendation in Alibaba


https://www.jianshu.com/p/caa2d87cb78c


Deep Interest Network for Click-Through Rate Prediction


Deep Interest Evolution Network for Click-Through Rate Prediction


Deep Session Interest Network for Click-Through Rate Prediction


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/72018969


2019-12-02 16:221645

评论

发布
暂无评论
发现更多内容

从青铜到王者,揭秘 Serverless 自动化函数最佳配置

Serverless Devs

Serverless 云原生

2022 IoTDB Summit:京东刘刚《Apache IoTDB 在京东万物互联场景中的应用》

Apache IoTDB

大数据 时序数据库 IoTDB

Serverless 时代开启,云计算进入业务创新主战场

Serverless Devs

Serverless

写入性能:TDengine 最高达到 InfluxDB 的 10.3 倍,TimeScaleDB 的 6.74 倍

TDengine

大数据 tdengine 性能测试 时序数据库 国产数据库

数据基础设施 NFTScan 新增支持 Gnosis 网络

NFT Research

NFT 区块链、

A/B实验避坑指南:为什么不建议开AABB实验

字节跳动数据平台

大数据 云服务 数据产品 AB testing实战

企业是否具备等保测评资质在哪里查?怎么查?

行云管家

等保 等级保护 等保测评

详解Docker容器运行GUI程序的方法

华为云开发者联盟

开发 华为云 华为云开发者联盟 企业号 3 月 PK 榜

你也能成为“黑客”高手——趣谈Linux Shell编程语言

京东科技开发者

Linux 系统架构 操作系统 开发 企业号 3 月 PK 榜

面对“中国式报表”需求, 瓴羊 Quick BI的电子表格优于Tableau?

夏日星河

如何使用 Apache IoTDB 中的 UDF

Apache IoTDB

UDF IoTDB

详解基于 Celestia、Eclipse 构建的首个Layer3 链 Nautilus Chain

股市老人

OceanBase 4.0 解读:全链路追踪要解决什么问题?从一条慢SQL说起

OceanBase 数据库

数据库 oceanbase

Deploy Workshop|DIY部署环境,让OceanBase跑起来

OceanBase 数据库

数据库 oceanbase

用友BIP事项会计 X 全面预算:多维数智预算助力企业敏捷算赢未来

用友BIP

智能会计

基于 eBPF 的 Serverless 多语言应用监控能力建设

Serverless Devs

Serverless

走进RocketMQ(四)高性能网络通信

白裤

Java RocketMQ io RocketMQ网络通信

CDR2023下载安装图文教程coreldraw23

茶色酒

CorelDraw2023

初识VUE响应式原理

京东科技开发者

Vue 系统架构 Proxy 企业号 3 月 PK 榜 响应系统

打造成熟产品矩阵,瓴羊Quick BI数据可视化获认可

小偏执o

云原生应用配置管理的5个最佳实践

HummerCloud

云原生

详解基于 Celestia、Eclipse 构建的首个Layer3 链 Nautilus Chain

鳄鱼视界

OceanBase 第六期技术征文活动|小鱼还能“更快”吗?你来试试

OceanBase 数据库

数据库 oceanbase

敏捷开发工具leangoo时间线视图管理项目

顿顿顿

Scrum 敏捷开发 甘特图 敏捷开发管理 时间线

超越ChatGPT:大模型的智能极限

OneFlow

人工智能 深度学习 ChatGPT

开源即时通讯IM框架 MobileIMSDK:快速入门

JackJiang

网络编程 即时通讯 IM

FL Studio编曲2023最新水果中文版本功能介绍

茶色酒

FL Studio 21

更人性化的无阈值监控不再为无效告警烦恼

观测云

运维 可观测性 监控告警 观测云 可观测性用观测云

k8s 探测方法总结

Geek_f24c45

#k8s

阿里:Behavior Sequence Transformer 解读_语言 & 开发_Alex-zhai_InfoQ精选文章