写点什么

数据中心的电力超售 · OSDI 2020

  • 2021-03-20
  • 本文字数:2493 字

    阅读完需:约 8 分钟

数据中心的电力超售 · OSDI 2020

『看看论文』是一系列分析计算机和软件工程领域论文的文章,我们在这个系列的每一篇文章中都会阅读一篇来自 OSDI、SOSP 等顶会中的论文,这里不会事无巨细地介绍所有的细节,而是会筛选论文中的关键内容,如果你对相关的论文非常感兴趣,可以直接点击链接阅读原文。


本文要介绍的是 2020 年 OSDI 期刊中的论文 —— Thunderbolt: Throughput-Optimized, Quality-of-Service-Aware Power Capping at Scale1,该论文实现的 Thunderbolt 可以在数据中心实现电力资源的超售,电子资源的超售可以使同一个数据中心运行更多的服务器,从而提高数据中心的整体性能并减少日常的维护开销、降低成本。


超售系统的目的都是降低成本并提高利用率,但是也都面临着资源过度使用的潜在可能,这也就需要引入限制和保护系统在影响系统之前或者之时及时止损,正如航空公司会超售机票一样,一旦超售的航班全满,就会采用升舱、换飞机或者赔偿等方式解决问题,避免事态的进一步恶化。



图 1 - 资源超售

现代的计算集群都会同时运行延时敏感型的在线服务和面向吞吐量的批处理工作负载,在运行期间一旦发生突发事件,我们会通过 Linux 内核的 CPU 限制等机制优先保证前者的延时,并在没有突发情况的机器上使用后者提高集群的资源利用率。


延迟敏感型的在线服务往往可以容忍宕机,但是它们需要保证程序执行期间有稳定的性能和资源,这些服务在遇到性能问题时更倾向于调度到其他资源充足的机器上;而面向吞吐量的批处理任务其实可以容忍资源的不稳定,但是一旦调度到其他机器上,可能需要重新计算,这就浪费了大量的计算和网络资源。



图 2 - 电力超售和混合部署

从调度的角度上来看,论文中 Thunderbolt 要解决的问题和混合部署、计算资源超售的场景非常相似,它们两者都希望保证集群中的两种类型服务的延迟和吞吐量,只是 Thunderbolt 会将电力资源作为约束条件,而后者的目的是更高的资源利用率,这也是作者对这篇论文感兴趣的原因。


Thunderbolt 使用如下所示的架构设计,图中的四个蓝色方块就是该系统的几个核心组件,我们能从图中清晰地看到该系统的数据流向:



图 3 - Thunderbolt 架构

上述架构中包含两个不同的电力限制路径,分别是根据实时数据决策的反应式限制(Reactive Capping)和被称为故障转移机制的主动式限制(Proactive Capping),这两种限制策略会在不同情况下触发。


  • 反应式限制:会监控电表发出的实时电力信号,当集群占用的电力功率高于特定数值时就会限制 CPU 的使用;

  • 主动式限制:当电力信号变得不可用时,主动式限制会接管整个系统,根据历史的数据评估机房断路器切断电源的风险,如果评估的风险过高,也会限制集群的 CPU 使用;

反应式限制

因为 CPU 的利用率能够很好地指示当前任务使用的 CPU 功率,所以我们可以通过限制 CPU 来降低整个集群中服务器消耗的电力。Thunderbolt 使用 Linux 内核的完全公平调度器(Completely Fair Scheduler)精确的控制节点中进程的 CPU 占用,以此来控制节点占用的资源:


独立的任务会运行在它们自己的 Linux 控制组(Cgroups)中,调度器提供了两个用于控制 CPU 使用量的参数,即 quota 和 period,其中 quota 是当前工作负载在每个 period 能够得到的执行时间,它们的单位都是微秒。如上图所示,当 quota 为 20,000、period 为 100,000 时,当前控制组中的任务在每 100ms 的时间周期中都会获得 20ms 的执行时间。


同一个节点上的不同任务会分别属于不同的控制组,我们可以通过调节它们的参数为不同的任务设置不同的服务质量。而 Thunderbolt 会利用上面这点将延迟敏感型的任务设置成高优先级,将面向吞吐量的的任务设置成低优先级,在电力资源不足时限制后者的 CPU 使用。



图 4 - 流量塑形

虽然我们会使用 CFS 限制工作负载的 CPU 使用,但是仍然需要上面的流量塑形控制策略决定应该何时限制以及如何限制 CPU 的使用量来控制集群的电力用量。在上述折线图中,包含两个不同的限制区域:


  • 硬限制区域:当节点的电力用量进入硬限制区域时,会将 CPU 的使用量减少 99% 防止过度使用资源,同时会立刻创建一段软限制区域;

  • 软限制区域:当节点的电力用量进入软限制区域时,会将 CPU 的使用量在一定时间内减少 25%,随后电力使用会在软限制区域区域下来回震荡,直到走出软限制区域;


软限制区域仅会在机器的能源使用进入硬限制区域时才会触发,同时会在一段时间后消失,减少对当前节点的电力资源的使用限制。

主动式限制

主动式的限制策略更像是一种故障转移的保护策略,当集群中的电表变得无法工作时,我们仍然需要保证集群的稳定。但是因为实时电力资源的缺失,我们没有办法使用上面的反应式策略,系统需要根据历史数据和服务质量决定每个任务分配的 CPU 资源。在这种策略下,使用 Linux 的 CFS 为工作负载动态分配资源是很难的,我们会直接将逻辑 CPU 从任务的 CPU 亲和(Affinity)中移除以减少资源的消耗。


与反应式策略仅会限制面向吞吐量的工作负载不同,当电表不能提供实时可用的数据时,CPU 的禁用会应用到集群中的全部的负载上,在这时我们只能牺牲在线服务的性能保证整个集群的电力安全,避免断电带来的大型事故。

总结

作为普通的软件工程师,在看这篇论文之前从来没有考虑过电力供应对数据中心带来的影响,也没有想过可以通过超售电力资源降低数据中心的成本。但是虽然我们没有遇到过这个问题,但是我们也可以从类似的问题中寻找答案,例如:集群中的计算资源超售和混合部署与论文中的场景有相似的解决方案。


这篇论文其实从不一样的角度开阔了我们的视野,让我们能从集群之外的物理世界考虑如何降低成本并提高能效,试想除了电力资源、计算资源的超售,我们还可以超售哪些资源呢,相信从这个角度出发,可以套用相似的逻辑解决不同的问题。


推荐阅读


  1. Li S, Wang X, Zhang X, et al. Thunderbolt: Throughput-Optimized, Quality-of-Service-Aware Power Capping at Scale[C]//14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20). 2020: 1241-1255. ↩︎


本文转载自:Draveness

原文链接:数据中心的电力超售 · OSDI 2020

2021-03-20 08:002191

评论

发布
暂无评论
发现更多内容

如何用文字让 ta 动心?

图灵教育

李小龙的话道出了移动端“小程序化”的核心——似水无形

FinClip

Logstash

平凡人生

商派oneX新零售系统上架华为云云商店,首次参与“828企业节”

神奇视野

Java更改 PDF 页面大小

在下毛毛雨

世界人工智能大会阿里巴巴专场论坛《数字时代的技术责任》来了!

阿里技术

Kyligence 助力重庆银行获 IDC FinTech 突破奖认可

Kyligence

数据分析 智能多维数据库

C#/VB.NET:删除PDF文档中的页面

Geek_249eec

C# VB.NET 删除PDF页面

如何用文字让 ta 动心?

图灵社区

「Java」本地文件上传下载预览

价投小邱

文件 下载 文件上传 #java

“小程序化”如何助力智慧产业园区建设破题?

FinClip

英特尔联手产业伙伴打造绿色、低碳、智能数据中心

科技之家

以PostgreSql为例,说明生产级别数据库安装要考虑哪些问题?

字母哥哥

数据库 postgresql Linux

浅谈DingOS 设备端计算

鼎道智联

隐私安全 智能推荐 本地计算 服务推荐

喜报 | 博睿数据两项发明专利获得国家知识产权局授权,累计发明专利11项

博睿数据

APM 可观测性 博睿数据 智能运维AIOps 发明专利

Python自学笔记6-列表有哪些常用操作

和牛

Python 测试 8月月更

如果重新学计算机

价投小邱

Linux 计算机网络 操作系统

万物皆可集成系列:低代码释放用友U8+深度价值(3)— 数据融合应用

葡萄城技术团队

开发制作数字藏品app原理

开源直播系统源码

NFT 数字藏品 数字藏品开发 数字藏品系统

Flink+ice 实现可视化规则编排与配置(Demo)

waitmoon

flink 规则引擎使用 规则引擎 CEP 编排系统

“中国建筑业竞争力百强”中化二建如何做知识管理?

sofiya

浅聊一下邮件通知的批量推送

为自己带盐

dotnetcore 8月月更 邮件发送

【数据结构实践】手把手带你简单实现Python自定义栈

迷彩

数据结构 算法 堆栈 8月月更

极光与华为云携手共赢,共同助力中企出海

科技云未来

InfoWorld文章丨将数据编排技术用于AI模型训练

Alluxio

人工智能 机器学习 数据平台 Alluxio 8月月更

探秘苹果、微软、谷歌操作系统视觉设计,原来…

鼎道智联

ios windows UI 操作系统 视觉交互

一文搞懂 SAE 日志采集架构

阿里巴巴云原生

阿里云 Serverless 云原生

英特尔CEO帕特·基辛格:以先进计算和封装创新,满足数字时代算力需求

科技之家

DevSecOps | 极狐GitLab 动态应用程序安全测试(DAST)使用指南

极狐GitLab

DevOps gitlab 运维 测试 CI/CD

4 天 7 条 PR,80% 代码覆盖率,开源是「内卷」还是修炼?

腾源会

开源 腾源会 开源摘星计划

数据中心的电力超售 · OSDI 2020_语言 & 开发_面向信仰编程_InfoQ精选文章