写点什么

Meta 版 ChatGPT 惨遭“开源”?最新大模型 LLaMA 被泄露,已在 GitHub 收获 7k+ 星

  • 2023-03-06
    北京
  • 本文字数:2942 字

    阅读完需:约 10 分钟

Meta版ChatGPT惨遭“开源”?最新大模型LLaMA被泄露,已在GitHub收获7k+星

Meta 的 LLaMA 代码已经和越来越多的开发者见面了,ChatGPT 正式开源还会远吗?

Meta 全新大语言模型 LLaMA 正通过种子公开发放


2 月 24 日,Meta 公司发布了新的大模型系列 —— LLaMA(Large Language Model Meta AI)。Meta 宣称,LLaMA 规模仅为竞争对手 ChatGPT 的“十分之一”,但性能却优于 OpenAI 的 GPT-3 模型。


近日,国外匿名论坛 4chan 泄露了 LLaMA 成品库,并且种子文件被合并到了 Meta Research 的 GitHub 上,同时一些项目维护者给予了批准,目前该项目在 GitHub 已收获 7k+ 个星。



GitHub 链接:


https://github.com/facebookresearch/llama/pull/73/files


对此,网友分成了两个派系:一方认为这次泄露事件是 Meta 方有意为之,另一方则认为只是单纯地被泄露。


网友 yunwal 表示:“Facebook 几乎肯定知道会发生泄密事件。我的猜测是保持模型“受控”是比其他任何事情都更重要的法律保护,以在有人滥用模型的情况下保护自己免受责任。”



网友 ok123456 则猜测:“也许这是 Meta 故意泄露的,以对抗 OpenAI。一些客户认为这是一个更好的模型,它恰好击中了他们以每年 25 万美元的价格出售访问权的商业计划的核心。访问他们的服务一个月可以购买一台能够运行这种泄露模型的机器。Facebook 削弱了一个潜在的新贵竞争对手,以保持当前的大型科技卡特尔稳定。也许这有点阴谋论,但我们生活在大科技和大阴谋的时代。”



也有网友反驳上述观点:“为什么要泄露它,而不是将它与关于开放和民主化 AI 等新闻稿一起发布?”,有网友称:“这根本不是阴谋。另请参阅 IE、Android、Kubernetes……”


目前,Meta 方面暂未对此事做出回应。有 Meta 员工表示:“Meta 员工可能没有注意到或仍在思考如何做出反应,因此 PR 仍在进行中。”


事实上,无论此事是否是 Meta 有意为之,在部分网友看来,LLaMA 原本的设定就是申请之后即可下载,“被公开是迟早的事情”。


与 OpenAI 的 GPT-3 相比,Meta 在一开始就将 LLaMA 定位成一个“开源的研究工具”,该模型所使用的是各类公开可用的数据集(例如 Common Crawl、维基百科以及 C4)。项目组成员 Guillaume Lample 在推文中指出,“与 Chinchilla、PaLM 或者 GPT-3 不同,我们只使用公开可用的数据集,这就让我们的工作与开源兼容且可以重现。而大多数现有模型,仍依赖于非公开可用或未明确记录的数据内容。”


早在上周发布时,Meta 就曾表示,LLaMA 可以在非商业许可下提供给政府、社区和学术界的研究人员和实体工作者,正在接受研究人员的申请。此外,LLaMA 将提供底层代码供用户使用,因此用户可以自行调整模型,并将其用于与研究相关的用例。也就是说,各方贡献者也能参与进来,让这套模型变得越来越好。LLaMA 的官方博文也提到,“后续还需要更多研究,以解决大语言模型中的偏见、有害评论和捏造事实等风险。”


此次非正式开源,或将标志着这些科技巨头们最优秀的大语言模型,正以前所未有的速度进入全球千行百业中,未来将以更丰富的产品形式让用户享受到先进的 AI 技术。

超越 ChatGPT,LLaMA 强在哪里?


根据 Meta 官方发布的消息,LLaMA 是一种先进的基础语言模型,旨在协助研究人员在 AI 相关领域迅速开展工作。


据悉,LLaMA 跟 OpenAI 的 GPT-3 模型差不多,LLaMA 模型是根据世界上二十种最流行的拉丁语和西里尔字母语言文本训练而成的。论文《LLaMA:开放且高效的基础语言模型》(LLaMA:Open and Efficient Foundation Language Models)就将该模型与 GPT、Gopher、Chinchilla 及 PaLM 等同类成果做出了比较。后面这几种模型都用到了广泛的公共数据,但也引入了某些非公开可用或未记录在案的文本数据。LlaMA 则仅使用公开可用的数据集进行训练,所以虽然自身尚未开源,但该模型与开源原则完全兼容。


从某种意义上讲,LLaMA 是对 2022 年 3 月发表的 Chinchilla 模型及其论文《训练计算优化型大模型》(Training Compute-Optimal Large Models)的直接反应。通过加州大学伯克利分校、哥伦比亚大学、芝加哥大学和伊利诺伊大学在 2021 年 1 月合作进行的大规模多任务语言理解(MMLU)基准测试,这篇论文探讨了模型大小、算力预算、令牌数量、训练时间、推理延迟和性能等问题。


论文中的核心观点是,AI 训练与推理的最佳性能未必由大模型的参数量直接决定。相反,增加训练数据并缩小模型体量才是达成最佳性能的前提。这样的训练可能需要更多时间,但也会带来有趣的意外收获 —— 在推理新数据时,小模型的速度更快。为了证明这一点,Chinchilla 的创建者一年前曾建议在 2000 亿个令牌(一个令牌代表一个单词片段)上训练一套具有 100 亿参数的模型。与之对应,LLaMA 的创建者称自己的模型只有 70 亿个参数,且仍在“继续优化中”,但令牌量已经高达 1 万亿。


LLaMA 模型还分别使用 67 亿、130 亿、320 亿和 652 亿几种参数组合进行训练,其中体量较小的两种使用 1 万亿个令牌,后两种较大的使用 1.4 万亿个令牌。Meta Platforms 采取了 2048 个英伟达 Ampere A100 GPU 加速器配合 80 GB HBM2e 内存,使用 1.4 万亿个令牌对规模最大的 LLaMA-65.2B 模型进行了测试,且训练周期为 21 天(每 GPU 每秒 380 个令牌)。


这样的速度并不算快,但 Meta AI 的研究人员表示,LLaMA-13B 模型“在大多数基准测试中都优于 GPT-3,且体积仅相当于后者的 1/139。”而且重点在于,“我们相信该模型有助于推动大语言模型的大众化普及,因为它完全能够在单 GPU 上运行。而且在规模化模型层面,我们的 65B 参数模型也完全能够与 Chinchilla 或者 PaLM-540B 等顶尖大语言模型相媲美。”

与其他同类大模型的性能对比


论文中列出大量性能比较,这里我们挑出几条来感受一下。下图展示了各模型在“常识推理”任务中的零样本性能表现:



零样本意味着利用一种数据训练而成的模型,对另外一种数据类型进行处理,且无需专门针对新类别做重新训练。(这也是大语言模型的强大之处,其具备自动扩展能力。)从表中的粗体部分可以看到,650 亿参数的 LLaMA 达成或超越了除 PaLM-540B 两个实例以外的其他所有模型,而且跟冠军的表现也相当接近。GPT-3 也在其中,其 1750 亿参数的版本虽然表现不错,但准确率也没有特别明显的优势。而且需要注意,GPT-3 的 1750 亿参数相当于 LLaMA-65B 的 2.7 倍。


在另一轮有趣的比较中,Meta Platforms 展示了 LLaMA 在人文、科学、技术与数学、社会科学及其他各领域的多选测试结果。我们来看以下图表:



这里测试的是所谓 5-shot 准确率,也就是对于任何特定问题,源材料都至少对其提及 5 次,(随着每次提及,答案的确定性水平都会提高,这与人类推理的过程非常相似。这反映的是除了确切知晓之外,我们也往往能从多选题中推断出正确答案。)


下图也很重要,展示的是 LLaMA 在不同参数规模下,与 Chinchilla 模型之间的常识推理与问答基准测试差异:



如图所示,LLaMA-33B 和 LLaMA-65B 已经可以与 Chinchilla-70B 模型正面对抗,当令牌数量达到 1 万亿时甚至能够反超。


值得一提的是,在 NaturalQuestions 和 SIQA 问答测试中,这些基础模型都及不了格——准确率过低,甚至距离及格线还有一段距离。各模型在 TriviaQA 测试中的得分在 D+ 到 C- 之间,在 WinoGrande 测试中得到 C- 至 C,在 HellaSwag 测试中得到 C 至 B,在 PIQA 测试中得到 C+ 至 B-。单从成绩来看,现有大语言模型还算不上班里的“尖子生”。

2023-03-06 14:1612752

评论 1 条评论

发布
用户头像
额。
2023-03-07 08:17 · 浙江
回复
没有更多了
发现更多内容

Nacos 发布 MCP Registry,实现存量应用接口“0改动”升级到 MCP 协议

阿里巴巴云原生

云计算

Higress.ai 站点全新发布,轻松解锁 AI 新能力,开启全球服务!

阿里巴巴云原生

阿里云 AI 云原生

基于阿里云可观测产品构建企业级告警体系的通用路径与最佳实践

阿里巴巴云原生

云计算

通义灵码 Rules 来了:个性化代码生成,对抗模型幻觉

阿里巴巴云原生

云计算 通义灵码

纯干货 | Dolphinscheduler Master模块源码剖析

白鲸开源

开源 源码解析 Apache DolphinScheduler

大模型 Token 的消耗可能是一笔糊涂账

阿里巴巴云原生

阿里云 云原生 Token

安装Redis

^O^

redis

2年前端人血泪经验,避坑贴……

伤感汤姆布利柏

Higress 开源 Remote MCP Server 托管方案,并将上线 MCP 市场

阿里巴巴云原生

云计算

《Operating System Concepts》阅读笔记:p528-p544

codists

操作系统

加入DolphinScheduler大家庭,成为大数据调度的传播者!

白鲸开源

开源 Apache DolphinScheduler

25年湖北等保测评机构名单汇总

行云管家

等保 堡垒机 等保测评

GSoC谷歌编程之夏2025招募中,Apache DolphinScheduler需要你的提案!

白鲸开源

开源 Apache DolphinScheduler 谷歌 GSoc

AI驱动智能决策:商品计划领域的零售时装品牌革新之路

第七在线

Java程序员需要掌握的技术

秃头小帅oi

<技术白皮书> 智能开发范式革新:iVX 图形化平台重塑软件开发生态

代码制造者

局域网开会的视频会议软件推荐哪个?

BeeWorks

IM 即时通讯IM 私有化部署 企业级应用 局域网视频软件

Burp Suite Professional 2025.3 发布,引入 Burp AI 通过人工智能增强安全测试工作流程

sysin

burp

怎样购置有限元分析软件 Abaqus?达索代理商思茂信息为您答疑

思茂信息

abaqus 达索系统 正版软件

新一代AI低代码MES,助力企业数字化升级

万界星空科技

AI 制造业 mes AI低代码平台 AI低代码MES

【LazyLLM × MinerU】你的私人学术特工已上线!PDF拆解黑科技来了,让RAG更懂你的文章!

商汤万象开发者

AI LLM

类似企微钉钉的企业聊天软件,这个局域网聊天工具可以选择!

BeeWorks

IM 即时通讯IM 私有化部署 企业级应用 局域网视频软件

直播预约|ApsaraMQ x Confluent 云原生 Kafka 线上沙龙

阿里巴巴云原生

kafka 阿里云 云原生

超实用!Prompt程序员使用指南,大模型各角色代码实战案例分享

王磊

加速人形机器人技术发展,2025亚洲人形机器人展开启全国巡展

AIOTE智博会

机器人展 机器人展览会 人形机器人展 机器人展会

CAD怎么插入PDF图纸

极客天地

CAD线型比例变了怎么办

极客天地

首发,Higress AI 网关率先支持 QwQ-32B,推理成本可再降 90%

阿里巴巴云原生

人工智能 云计算

CAD如何提取图形数据

极客天地

基于阿里云可观测产品构建企业级告警体系的通用路径与最佳实践

阿里巴巴云原生

云计算

Meta版ChatGPT惨遭“开源”?最新大模型LLaMA被泄露,已在GitHub收获7k+星_AI&大模型_凌敏_InfoQ精选文章