写点什么

京东:利用 DRL 算法进行带负反馈的商品推荐

  • 2019-11-29
  • 本文字数:1607 字

    阅读完需:约 5 分钟

京东:利用DRL算法进行带负反馈的商品推荐

背景与介绍

大都数传统的推荐系统(协同过滤、基于内容的推荐、learning-to-rank)只是将推荐过程当做一个静态的过程,并且在一段时间内是根据固定的模型来进行推荐。当用户的兴趣发生动态变化时,这些传统方法推荐的内容就不能捕捉到用户兴趣的实时变化。因此本文提出了一种 DRL 算法,可通过推荐系统和用户不断交互来持续提升推荐质量。


在电商领域,用户有正反馈和负反馈(比如用户点击了商品为正反馈,用户对商品没有任何操作称为负反馈),并且负反馈的数量远远大于正反馈。因此正反馈给模型带来的影响经常被负反馈给“冲刷”掉。本文提出的 deep recommender system(DEERS)的算法框架可将正、负反馈同时融入到模型中。


文中将了将 RL 引入到推荐系统中的两个优势:1. 通过用户与推荐系统的不断交互,可持续更新 try-and-error 策略,直到模型收敛到最优;2. 在当前状态动作对下,通过带延迟奖赏构造的 value 值可不断训练推荐模型。对于一个用户来讲,其最优的策略就是最大化该用户的期望累计奖赏。因此推荐系统通过很小的即时奖赏就可筛选出商品。

问题建模

环境:用户 agent:推荐系统


MDP 中各元素的定义为:


状态空间 S:用户之前的浏览历史,包括点击/购买过的和略过的,二者分开进行处理。同时,物品是按照先后顺序进行排序的。


动作空间 A:一次只给用户推荐一个物品,那么推荐的物品即动作。


即时奖励 R:在给用户推荐一个物品后,用户可以选择忽略、点击甚至购买该物品,根据用户的行为将给出不同的奖励。


状态转移概率 P:状态的转移主要根据推荐的物品和用户的反馈来决定的。


折扣因子 r:对未来收益进行一定的折扣


模型框架

基本的 DQN 模型,只考虑正向的反馈


状态 s: [公式],用户之前点击或购买过的 N 个物品同时按照时间先后进行排序


s 转移到 s’:假设当前的推荐物品 a,用户若点击或购买,则 [公式] ,若用户略过,则 s’=s 。


需要注意的是,仅仅使用离散的 indexes 去表示 items 是表达力不够的,比如相似的商品仅从 index 上也是无法推断的。一个常见的做法是,在表示 item 的时候加入额外的信息,比如 brand,price 和月销量等等。本文则是采用了另外一种方法,将用户的浏览历史当做一个 session 下的序列,然后通过 word embedding 技术去训练得到每个 item 的 embedding 表示(有点像 Airbnb 的做法)。



训练得到 item 的 embedding 之后,将状态和动作的 embedding 表示 concat 起来作为模型的输入,输出为该状态动作对的 Q 值。更新方法和传统的 DQN 是一样的。这里就不详细介绍了


  1. DEERS 模型,同时考虑正向和负向反馈


对于基本的 DQN 模型来说,一个明显的缺点是,当推荐的物品被用户忽略时,状态是不会发生变化的。因此 DEERS 模型在状态中也考虑被用户忽略过的商品。


当前状态 s: 当前状态 s 包含两部分 s=(s+,s-),其中 s+={i1,i2,…,iN},表示用户之前点击或购买过的 N 个物品,s-={j1,j2,…,jN},表示用户之前略过的 N 个物品。同时物品按照时间先后进行排序。


s 转移到 s’:假设当前的推荐物品 a,用户若点击或购买,则 s’+={i2,i3,…,iN,a},若用户略过,则 s’-={j2,j3,…,jN,a} 。那么,s’ = (s’+,s’-)。



如上图,DEERS 模型使用 GRU 来抽取 s+,s-两个序列的表征。


另外,DEERS 模型还考虑了商品之间的偏序关系。对于一个商品 a,偏序对中的另一个商品称为 [公式] ,但只有满足三个条件,才可以称为[公式]。首先,[公式]必须与 a 是同一类别的商品;其次,用户对于[公式]和 a 的反馈是不同的;最后,[公式]与 a 的推荐时间要相近。


若商品 a 能够找到有偏序关系的物品[公式] ,此时不仅需要预估的 Q 值和实际的 Q 值相近,同时也需要有偏序关系的两个物品的 Q 值差距越大越好,因此模型的损失函数变为:



其中,目标 Q 值 y 的计算为:



整个算法的流程为:



参考文献:


https://arxiv.org/pdf/1802.06501.pdf


https://www.jianshu.com/p/fae3736e0428


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/77224966


2019-11-29 11:402378

评论

发布
暂无评论
发现更多内容

微服务身份认证需求下的私钥托管痛点与破局

全象云低代码

微服务 低代码 身份认证 鉴权 密钥

《重构 JavaScript》读后感和部分摘录

道道里

前端 测试 重构

2022年的SaaS行业,钱往哪里去?

ToB行业头条

DM 中 relay log 性能优化实践丨TiDB 工具分享

PingCAP

会声会影2022脸部索引功能详解

懒得勤快

2022年1月娱乐直播行业用户洞察:行业格局稳定,内容运营精细化

易观分析

一文全面掌握大数据关联与汇聚

云智慧AIOps社区

redis Clickhouse flink sql 大数据开发

刚刚,我们收到了北京冬奥组委的感谢信

阿里巴巴云原生

阿里云 云原生 冬奥会 合作

2022,你的团队距离持续部署还有多远?| 研发效能提升36计

阿里云云效

阿里云 云原生 持续部署 研发团队 研发

【C语言】一篇速通操作符

謓泽

C语言 操作符 3月月更

首发|Clusterpedia 0.1.0 四大重要功能

Daocloud 道客

开源项目 多云管理 K8s 多集群管理 多云资源复杂检索

EMQ 正式成为 OASIS 最高级别成员,主导推进物联网协议标准化应用

EMQ映云科技

开源 物联网 ibm mqtt OASIS

混合云管平台排名您知道吗?看这里!

行云管家

混合云 云管

Tuxera2022mac读写硬盘U盘工具

茶色酒

Tuxera2022

企业培训赛道大火,谁能真正解企业人才培训之急?

ToB行业头条

数仓中长跳转问题复现及解决方案

华为云开发者联盟

寄存器 GaussDB(DWS) 长跳转 编译器O2

上手体验!如何借助龙蜥实验室快速部署 Web 应用?

OpenAnolis小助手

开源 国产操作系统 web服务器

始于信任 忠于专业|DataPipeline收到一封来自山东城商行联盟的感谢信

DataPipeline数见科技

脱颖而出!OceanBase 入选 2021“科创中国”开源创新榜单

OceanBase 数据库

数据库 分布式 OceanBase 开源 科创中国

web前端培训:Vue3 调度系统的深度剖析

@零度

Vue 前端开发

Web 键盘输入法应用开发指南 (3) —— 输入法事件

天择

JavaScript 键盘 输入法 3月月更

大数据培训:Spark高频面试题汇总

@零度

大数据 spark

《隐私计算》重磅发布,全面、系统论述数据要素安全流通价值

博文视点Broadview

智汇华云 | Kubernetes多集群管理方案kubefed原理解析

华云数据

云计算 华云数据 虚拟云

高性能图计算系统 Plato 在 Nebula Graph 中的实践

NebulaGraph

图数据库 图计算 分布式图数据库

如何获取 Docker 容器的 IP 地址

AlwaysBeta

Docker 容器

2022年数据库审计厂家就选行云管家!功能强大!

行云管家

数据库 网络安全 数据库审计

从Nacos到完全自研|得物的注册中心演进之路

得物技术

架构 raft 注册中心 实例 兼容性测试

Camtasia Studio2022激活码序列号

茶色酒

Camtasia Studio2022

IOS技术分享| anyLive 开源项目

anyRTC开发者

ios 音视频 移动开发 视频直播 开源demo

java培训:MyBatis的架构与原理分析

@零度

mybatis JAVA开发

京东:利用DRL算法进行带负反馈的商品推荐_语言 & 开发_Alex-zhai_InfoQ精选文章