AI 年度盘点与2025发展趋势展望,50+案例解析亮相AICon 了解详情
写点什么

数据科学家一定要收藏的十个最佳 Python 库

  • 2022-03-08
  • 本文字数:2596 字

    阅读完需:约 9 分钟

数据科学家一定要收藏的十个最佳 Python 库

如果你希望做数据科学家或者机器学习工程师,希望能找到用于数据科学、机器学习、数据分析和深度学习的最佳 Python 库,这篇文章将会对你有很大的帮助。


数据科学家需要一种能够对数据进行清理、转换、分析和可视化的工具,本文提到的这 10 款工具可以帮助你成为更优秀的数据科学家


对于刚开始从事数据科学和机器学习的人来说,我首先要恭喜你们,因为你们已经做出了正确的决定并且学习了有用的技术。但是学习这些技术并不容易,有很多选择要做,每个选择都有自己的结果。


当我开始我的机器学习和数据科学之旅时,我不得不从 R 和 Python 这两种编程语言中选择合适的,因为这两种语言都做得很好。


我最后还是选择了 Python,原因是 Python 的社区规模更大,通用性更高,并且之前也有过编写 Python 代码的经历。不过,我之所以选择 Python 作为数据科学和机器学习的原因,那就是 Python 有很多非常棒的库


今天,我将向你介绍其中一些很棒的库,如 TensorFlow、NumPy、Pandas、SciPy、Scikit-learn、Seaborn、Keras 和 Matplotlib。我知道还有很多库,但以我有限的经验和接触,到目前为止我只听说过本文提到的这些主要库。


当我遇到新的库时,我肯定会在这个列表中添加新的库,但在此之前,了解这些库会对你有很大帮助,特别是如果你也在使用 Python 学习数据科学、人工智能和机器学习。


不管你是新手,还是对数据科学有一定的研究,学习这些库能让你更有效率,也能提升你的形象。另外,如果你是个新手,我推荐你从实践课程开始,从头学习 Python 和数据科学。


不多说了,下面是对一些最流行的数据科学和机器学习的 Python 库的基本介绍。为使说明简洁,我尽量说明简短,并给出它的资源,以了解更多信息。


由于我也在学习 Python 和机器学习,那么将来我会对这些库进行详细的阐述,因为你至少需要一篇文章来详细说明它们。

1、TensorFlow


这是最流行的机器学习库之一,你很有可能已经听说过它了。你可能知道 TensorFlow 来自谷歌,是由他们的谷歌大脑团队发明的,并用于 RankBrain 算法,该算法为谷歌搜索引擎上的数百万个搜索问题提供动力。


一般来说,它是一个符号数学库,也被用于机器学习应用,如神经网络。TensorFlow 有很多应用,你可以在网上找到很多故事,比如一个日本农民如何使用 TensorFlow 来分拣黄瓜。


项目地址:https://github.com/tensorflow/tensorflow

2、Keras


创建机器学习和基于深度学习的解决方案的主要问题之一是,实现它们可能很繁琐,需要编写许多行复杂的代码。Keras 是一个库,使你更容易创建这些深度学习解决方案。


只需几行代码,你就可以创建一个可能需要数百行传统代码的模型。


项目地址:https://github.com/keras-team/keras

3、Scikit-learn


这是另一个流行的机器学习的 Python 库。事实上,Scikit-learn 是机器学习的主要库。它有用于预处理、交叉验证和其他类似目的的算法和模块。


其中一些算法涉及回归、决策树、集合建模和非监督学习算法,如聚类。


项目地址:https://github.com/scikit-learn/scikit-learn

4、NumPy


NumPy 是另一个用于机器学习和重度计算的精彩 Python 库。NumPy 促进了简单而有效的数字计算。它有许多其他的库建立在它的基础上,如 Pandas。


你至少应该确保学习 NumPy 数组,它是基本的,在机器学习、数据科学和基于人工智能的程序中有很多应用。


项目地址:https://github.com/numpy/numpy

5、SciPy


这是一个用于科学和技术计算的 Python 库。它将为你提供科学和技术计算所需的所有工具。


它有优化、线性代数、积分、插值、特殊函数、快速傅立叶变换、信号和图像处理、独依赖估计求解器和其他任务等模块。


有一个很好的免费课程来学习 SciPy 与 Python:《深度学习的先决条件:Python 中的 Numpy 栈》(Deep Learning Prerequisites: The Numpy Stack in Python)。这是我的最爱,有超过 10 万名其他开发者也报名参加了这个课程。你可以在它转换为付费课程之前看看这个。


项目地址:https://github.com/scipy/scipy

6、Matplotlib


如果你需要绘图,那么 Matlotlib 是一个选择。它提供了一个灵活的绘图和可视化库,Matplotlib 很强大。但是,它很麻烦,所以,你可以选择 Seaborn 来代替。


项目地址:https://github.com/matplotlib/matplotlib

7、Pandas


这是一个建立在 NumPy 之上的 Python 库。它在数据结构和探索性分析方面很方便。它提供的另一个重要功能是 DataFrame,一个具有潜在不同类型的列的二维数据结构。


Pandas 将是你一直需要的最重要的库之一,这就是为什么学好 Pandas 非常重要。


项目地址:https://github.com/pandas-dev/pandas

8、Seaborn


和 Matplotlib 一样,它也是一个很好的绘图库,但有了 Seaborn,绘制普通的数据可视化就比以前更容易了。


它建立在 Matplotlib 的基础上,提供了一个更令人愉快的高级包装器。你应该学习有效的数据可视化。


项目地址:https://github.com/seaborn

9、OpenCV


这是 Python 开发人员在计算机视觉方面的另一个重要库。如果你不知道,计算机视觉是机器学习和人工智能中最令人兴奋的领域之一。


它在许多行业都有应用,如自动驾驶汽车、机器人、增强现实等,而 OpenCV 是最好的计算机视觉库。


尽管你可以用许多编程语言如 C++ 来使用 OpenCV,但它的 Python 版本对初学者友好,易于使用,这使它成为一个伟大的库,被列入这个列表。


如果你想学习 Python 和 OpenCV 进行基本的图像处理,并进行图像分类和物体检测,并且需要一个课程,那么我强烈建议你参加一个实践课程,该课程将通过几个实验和练习教你一个 OpenCV。


项目地址:https://github.com/opencv/opencv

10、PyTorch


这是另一个用于数据科学和机器学习的令人兴奋和强大的 Python 库,是每个数据科学家都应该学习的东西。


如果你不知道,PyTorch 是 Facebook 开发的最好的深度学习库之一,可用于深度学习应用,如人脸识别自动驾驶汽车等。


你也可以使用 PyTorch 来构建机器学习模型,如 NLP 和计算机视觉,仅举几例。你也可以使用 PyTorch 来创建深度神经网络。


项目地址:https://github.com/pytorch/pytorch

结语


这就是关于数据科学、机器学习和人工智能的一些最佳 Python 库的全部内容。根据你在机器学习和数据科学方面的具体工作,你可以选择这些库来帮助你。


如果你重新开始,我建议你学习 TensorFlow 或 Scikit-learn,在我看来,这是两个最受欢迎的机器学习的主要库。


原文链接:


https://dzone.com/articles/10-best-data-science-data-analysis-and-machine-lea

2022-03-08 11:0912000
用户头像
李冬梅 加V:busulishang4668

发布了 956 篇内容, 共 554.0 次阅读, 收获喜欢 1118 次。

关注

评论

发布
暂无评论
发现更多内容

轻量级 Kubernetes 多租户方案的探索与实践

火山引擎开发者社区

Kubernetes 云原生

苹果手机怎么恢复备份?iOS备份恢复教程

茶色酒

苹果手机备份

云原生训练营学习总结

arctec

华为云大咖带你玩转云原生基础设施之K8s

坚果

4月月更

面由 AI 生|虚拟偶像“捏脸”技术解析

ZEGO即构

计算机视觉 虚拟偶像 Avatar AI捏脸

Dio 封装之金屋藏娇

岛上码农

flutter ios开发 安卓开发 4月月更 跨平台开发

元宇宙(Metaverse)对普通人意味着什么?

涛哥 数字产品和业务架构

元宇宙

微信小程序开发系列 (三) :微信小程序如何响应用户点击事件和微信平台 API 的使用方法介绍

汪子熙

微信小程序 微信公众平台 前端开发 4月月更 微信平台

ArrayList和SubList的坑面试题

芝士味的椒盐

Java 面试题 Java 开发

我们需要一个元宇宙吗?

涛哥 数字产品和业务架构

元宇宙

业务架构师的思维转变

涛哥 数字产品和业务架构

什么是瀑布开发?适用于哪些场景?有哪些瀑布开发管理系统?

爱吃小舅的鱼

自己动手写 Docker 系列 -- 6.5 启动时给容器配置网络

Go Docker 4月月更

云原生训练营 -Week10

jjn0703

云原生训练营

imazing是什么软件?

茶色酒

imazing

Go 语言入门很简单:正则表达式

宇宙之一粟

正则表达式 Go 语言 4月月更

组织能力建设为啥这么难

凌晞

组织活力 组织建设

时序数据库 vs OLAP

CnosDB

IoT 时序数据库 开源社区 CnosDB infra

元宇宙或许翻译错了

涛哥 数字产品和业务架构

元宇宙

[Day24]-[二叉树] 相同树

方勇(gopher)

LeetCode 二叉树 DFS BFS 数据结构算法

架构实战营 - 第 6 期 模块四课后作业

乐邦

「架构实战营」

KubeVela 1.3 发布:开箱即用的可视化应用交付平台,引入插件生态、权限认证、版本化等企业级新特性

阿里巴巴云原生

阿里云 开源 云原生 KubeVela

微信小程序开发系列 (二) :微信小程序的单步调试和控制器实现步骤概述

汪子熙

微信小程序 前端开发 MVVM 微信开发 4月月更

开发、运维、业务都说好的全栈云原生长这样!

York

云原生 系统架构 全栈

Mysql应用开发规范

阿丞

MySQL

redis优化系列(四)哨兵机制

乌龟哥哥

4月月更

imazingAPP软件怎么安装到苹果手机电脑上面?

茶色酒

imazing

Plato Farm的“P2E”经济模型,赚取更多的MARK是关键

BlockChain先知

企业架构的7个关键趋势

涛哥 数字产品和业务架构

企业架构

提前起跑的OPPO,靠闪充完成一次“三级跳”

脑极体

元宇宙是人类的终极未来吗?

涛哥 数字产品和业务架构

元宇宙

数据科学家一定要收藏的十个最佳 Python 库_文化 & 方法_Javin Paul_InfoQ精选文章