AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

AI/ML 算法的公平性,偏差和对社会/经济的影响

  • 2020-02-05
  • 本文字数:2360 字

    阅读完需:约 8 分钟

AI/ML算法的公平性,偏差和对社会/经济的影响

ArchSummit 北京 2019 大会上,陈海春讲师做了《AI / ML 算法的公平性,偏差和对社会/经济的影响》主题演讲,主要内容如下。


演讲简介


Fairness, bias, and social/economical impact of AI/ML algorithms


“With great power comes great responsibility”, as AI/ML especially deep learning continues to advance in research and expand to commercial applications, AI/ML algorithms are making big social economical impact to people’s lives, from deciding what health insurance policy a person can get, to whether a bank decides to issue a loan to a borrower, or what content a person can see on a web site. With even a slight bias, the algorithms can amplify unfairness or even injustice. So how do we unleash the power of AI/ML to improve people’s lives with fairness and justice, while not tying the hands of the algorithm developers? In this talk, I will talk about how bias creeps into your ML models, both consciously and unconsciously, both from data and from the code, how to address them with novel debias techniques and blackbox model interpretation components, and how to design fairness principles into the architecture of your ML platform, all by using real world examples, cutting edge research results, and practical techniques in algorithm and architecture design. At the end of the talk, you should have a higher level of awareness of bias in AI/ML algorithms, recognize the value of fairness instead of viewing it as an inconvenience, have a mindset of how to address them in your design of ML platform and solutions.


内容大纲


  1. Overview of fairness and bias in AI/ML

  2. Unconscious bias in data

  3. Unconscious bias in algorithms

  4. Well-known trust busters

  5. Current state of the art: research and industry

  6. Case study: B2B AI/ML solutions for digital experience optimization

  7. Identification of protected groups

  8. Generic measurement of fairness

  9. Innovation to correct bias while minimizing accuracy loss

  10. Innovation to interpret black-box model results

  11. Opportunities and challenges in generalizing fairness practices in AI/ML platforms


参考译文


演讲简介


俗话说“权力越大责任越大”。随着 AI / ML(尤其是深度学习)在研究中不断发展并扩展到商业应用,AI / ML 算法对人们的生活日渐产生巨大的社会经济影响,例如保险公司卖给消费者什么样的健康保险,银行是否决定向借款人发放贷款,甚至在网站决定访问者看到什么内容都是由算法决定。即使有轻微的偏差,这些算法都会加剧社会的不公平甚至不公正。那么,如何在不束缚算法开发人员创新的前提下,发挥 AI / ML 的力量,以公平和正义的方式来改善人们的生活呢?


在本次演讲中,我将讨论数据和算法如何有意识或无意识地将偏差渗入到 ML 模型中,如何使用新颖的 Debias 技术和黑盒式模型解释组件来解决这个问题,以及如何将公平原则融入到 ML 平台的架构设计中。所有这些都通过真实案例,前沿研究结果以及算法和架构设计中的实用技术来讲述,以帮助大家对 AI / ML 算法中的偏差有更高的认识,认识到公平的价值,而不是将其视为负担,同时也了解如何在 ML 平台设计中处理这些问题。


内容大纲


  1. AI / ML 中的公平性和偏差概述

  2. 数据中的无意识偏差

  3. 算法中的无意识偏差

  4. 著名的信任破坏案例

  5. 最新的研究和工业技术案例

  6. 案例研究:用于数字体验优化的 B2B AI / ML 解决方案

  7. 确认受保护群体

  8. 公平性的衡量方法

  9. 最小精度损失的去偏差创新方法

  10. 黑箱式模型解释创新方法

  11. 在 AI / ML 平台中推广公平实践的机会和挑战


讲师介绍


陈海春


Netflix Manager, Content Knowledge, Data Science and Engineering


I am managing Content Knowledge Graph team at Netflix where we apply deep learning techniques in NLP and CV to curate the best knowledge about entities in the entertainment world, which in turn is used in content/talent discovery and acquisition. We leverage state-of-the-art models but also develop our own technology whenever necessary. Prior to Netflix, I led data science teams as a group manager at Adobe Inc. where my teams provided AI/ML solutions to enterprises such as Nike and Disney. Prior to Adobe I worked as a senior machine learning engineer at Google where I applied AI/ML techniques to combat abuse and anomaly problems for highly impactful products such a AdWords and Google Play. Prior to Google, I worked as Software Architect at Synopsys Inc. where I applied algorithms and system design to solve simulation problems for semiconductor design and manufacturing.


参考译文:我在 Netflix 带领内容知识图谱团队,结合 NLP 和 CV 中的深度学习技术,来收集有关娱乐界个体的最准确知识,然后利用这些知识帮助我们发现和招募优秀的娱乐内容和人才。我们尽可能采用当前最先进的模型,如有需要也会开发自己的技术。在加入 Netflix 之前,我曾在 Adobe Inc. 领导数据科学团队,为耐克和迪斯尼等企业提供 AI / ML 解决方案。在此之前,我在 Google 担任高级机器学习工程师,使用 AI / ML 技术来解决 AdWords 和 Google Play 等产品中的滥用和异常行为侦测。在 Google 之前,我曾在 Synopsys Inc. 担任软件架构师,应用算法和系统设计来解决半导体设计和制造中的仿真问题。












完整演讲 PPT 下载链接


https://archsummit.infoq.cn/2019/beijing/schedule


2020-02-05 19:341411

评论

发布
暂无评论
发现更多内容

重置云服务器系统

坚果

云服务器 11月日更

软件测试高效学习方法

程序员阿沐

学习方法 程序员 互联网 软件测试 计算机

iOS开发:报错‘Unknown class ViewController in Interface Builder file’解决方法

三掌柜

11月日更

架构实战营-设计消息队列存储消息数据的 MySQL 表格

Nullrable

架构实战

架构实战营-模块三

瓜子葫芦侠

「架构实战营」

程序员别只顾着敲代码了,老板们不喜欢聘请40岁程序员真相原来是

android 程序员 移动开发

值得收藏的 Eureka 控制台详解

悟空聊架构

Eureka 源码解析 注册中心 悟空聊架构 11月日更

【Flutter 专题】17 图解 ListView 下拉刷新与上拉加载 (二)【NotificationListener】

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 11月日更

SAP云平台里Global Account和Sub Account的关系

汪子熙

Cloud SAP CloudFoundry 11月日更

老友(研发岗)被裁后,想加盟小吃店,我用Python采集了一点数据,多少是个心意

梦想橡皮擦

11月日更

绝佳的录屏编辑神器,一款走遍天下!!

淋雨

Camtasia

腾讯云数据库TDSQL已助力20余家金融机构完成核心系统替换 即将进入规模化复制阶段

科技热闻

《Linux一学就会》第一章第二节:学习环境搭建

侠盗安全

Linux linux运维 云计算架构师 linux电子书

【设计模式】第十二篇 - 桥接模式 - 露娜的召唤师技能

Brave

设计模式 桥接模式 11月日更

前端开发工具之Mock.js

Augus

11月日更

构建数据网格分布式架构的四项原则

俞凡

架构 数据

思科基本网络连接与IOS的基本操作 「网络工程师之路」

Regan Yue

网络工程师 11月日更 思科 网络工程

记录渗透靶场实战【网络安全】

网络安全学海

网络安全 信息安全 渗透测试 WEB安全 安全漏洞

MacBook 搭建VUE3开发环境

IT蜗壳-Tango

11月日更

Vue进阶(幺陆柒):Vue 项目调试技能

No Silver Bullet

Vue 11月日更

与德勤论道企业数字化战略到落地

大咖说

云计算 数字化转型 数字化 企业上云 阿里云;

rabbitmq简介

小鲍侃java

11月日更

程序员为什么越老贬值的越厉害?,面试官6个灵魂拷问

android 程序员 移动开发

【高并发】明明中断了线程,却为何不起作用呢?

冰河

并发编程 多线程 高并发 异步编程 Java Concurrency

【死磕Java并发】—–深入分析volatile的实现原理

chenssy

11月日更 死磕 Java 死磕 Java 并发

使用Eclipse开发Java应用并部署到SAP云平台SCP上去

汪子熙

Cloud SAP 11月日更 sap开发

Redis 高可用篇:图解 Redis 哨兵集群原理

码哥字节

redis redis sentinel NoSQL 数据库 11月日更

架构实战营-模块6作业

Nullrable

架构实战营

Groovy中的元组

FunTester

测试开发 元组 Groovy FunTester tuple

程序员你所害怕的中年危机,恰恰是人生的转机!,kotlin高阶函数源码讲解

android 程序员 移动开发

thanos-io/thanos-CONTRIBUTING.md

卓丁

Prometheus Thanos thanos.io Contributing github Contributing

AI/ML算法的公平性,偏差和对社会/经济的影响_ArchSummit_陈海春_InfoQ精选文章