写点什么

AI/ML 算法的公平性,偏差和对社会/经济的影响

  • 2020-02-05
  • 本文字数:2360 字

    阅读完需:约 8 分钟

AI/ML算法的公平性,偏差和对社会/经济的影响

ArchSummit 北京 2019 大会上,陈海春讲师做了《AI / ML 算法的公平性,偏差和对社会/经济的影响》主题演讲,主要内容如下。


演讲简介


Fairness, bias, and social/economical impact of AI/ML algorithms


“With great power comes great responsibility”, as AI/ML especially deep learning continues to advance in research and expand to commercial applications, AI/ML algorithms are making big social economical impact to people’s lives, from deciding what health insurance policy a person can get, to whether a bank decides to issue a loan to a borrower, or what content a person can see on a web site. With even a slight bias, the algorithms can amplify unfairness or even injustice. So how do we unleash the power of AI/ML to improve people’s lives with fairness and justice, while not tying the hands of the algorithm developers? In this talk, I will talk about how bias creeps into your ML models, both consciously and unconsciously, both from data and from the code, how to address them with novel debias techniques and blackbox model interpretation components, and how to design fairness principles into the architecture of your ML platform, all by using real world examples, cutting edge research results, and practical techniques in algorithm and architecture design. At the end of the talk, you should have a higher level of awareness of bias in AI/ML algorithms, recognize the value of fairness instead of viewing it as an inconvenience, have a mindset of how to address them in your design of ML platform and solutions.


内容大纲


  1. Overview of fairness and bias in AI/ML

  2. Unconscious bias in data

  3. Unconscious bias in algorithms

  4. Well-known trust busters

  5. Current state of the art: research and industry

  6. Case study: B2B AI/ML solutions for digital experience optimization

  7. Identification of protected groups

  8. Generic measurement of fairness

  9. Innovation to correct bias while minimizing accuracy loss

  10. Innovation to interpret black-box model results

  11. Opportunities and challenges in generalizing fairness practices in AI/ML platforms


参考译文


演讲简介


俗话说“权力越大责任越大”。随着 AI / ML(尤其是深度学习)在研究中不断发展并扩展到商业应用,AI / ML 算法对人们的生活日渐产生巨大的社会经济影响,例如保险公司卖给消费者什么样的健康保险,银行是否决定向借款人发放贷款,甚至在网站决定访问者看到什么内容都是由算法决定。即使有轻微的偏差,这些算法都会加剧社会的不公平甚至不公正。那么,如何在不束缚算法开发人员创新的前提下,发挥 AI / ML 的力量,以公平和正义的方式来改善人们的生活呢?


在本次演讲中,我将讨论数据和算法如何有意识或无意识地将偏差渗入到 ML 模型中,如何使用新颖的 Debias 技术和黑盒式模型解释组件来解决这个问题,以及如何将公平原则融入到 ML 平台的架构设计中。所有这些都通过真实案例,前沿研究结果以及算法和架构设计中的实用技术来讲述,以帮助大家对 AI / ML 算法中的偏差有更高的认识,认识到公平的价值,而不是将其视为负担,同时也了解如何在 ML 平台设计中处理这些问题。


内容大纲


  1. AI / ML 中的公平性和偏差概述

  2. 数据中的无意识偏差

  3. 算法中的无意识偏差

  4. 著名的信任破坏案例

  5. 最新的研究和工业技术案例

  6. 案例研究:用于数字体验优化的 B2B AI / ML 解决方案

  7. 确认受保护群体

  8. 公平性的衡量方法

  9. 最小精度损失的去偏差创新方法

  10. 黑箱式模型解释创新方法

  11. 在 AI / ML 平台中推广公平实践的机会和挑战


讲师介绍


陈海春


Netflix Manager, Content Knowledge, Data Science and Engineering


I am managing Content Knowledge Graph team at Netflix where we apply deep learning techniques in NLP and CV to curate the best knowledge about entities in the entertainment world, which in turn is used in content/talent discovery and acquisition. We leverage state-of-the-art models but also develop our own technology whenever necessary. Prior to Netflix, I led data science teams as a group manager at Adobe Inc. where my teams provided AI/ML solutions to enterprises such as Nike and Disney. Prior to Adobe I worked as a senior machine learning engineer at Google where I applied AI/ML techniques to combat abuse and anomaly problems for highly impactful products such a AdWords and Google Play. Prior to Google, I worked as Software Architect at Synopsys Inc. where I applied algorithms and system design to solve simulation problems for semiconductor design and manufacturing.


参考译文:我在 Netflix 带领内容知识图谱团队,结合 NLP 和 CV 中的深度学习技术,来收集有关娱乐界个体的最准确知识,然后利用这些知识帮助我们发现和招募优秀的娱乐内容和人才。我们尽可能采用当前最先进的模型,如有需要也会开发自己的技术。在加入 Netflix 之前,我曾在 Adobe Inc. 领导数据科学团队,为耐克和迪斯尼等企业提供 AI / ML 解决方案。在此之前,我在 Google 担任高级机器学习工程师,使用 AI / ML 技术来解决 AdWords 和 Google Play 等产品中的滥用和异常行为侦测。在 Google 之前,我曾在 Synopsys Inc. 担任软件架构师,应用算法和系统设计来解决半导体设计和制造中的仿真问题。












完整演讲 PPT 下载链接


https://archsummit.infoq.cn/2019/beijing/schedule


2020-02-05 19:341473

评论

发布
暂无评论
发现更多内容

生态发展 人才先行 | 深开鸿亮相首届OpenHarmony人才生态大会

新消费日报

LED显示屏行业:消费驱动和零售渠道的新发展

Dylan

技术 LED显示屏 led显示屏厂家 消费

如何零成本的提高3D模型的加载速度

3D建模设计

纹理贴图 模型渲染 材质纹理 材质编辑

MegEngine 正式支持 XLA 啦!

MegEngineBot

模型训练 开源框架 模型推理

国产大模型与国外差距的深度解析

百度开发者中心

人工智能 大模型 ChatGPT

大模型:深度学习之旅与未来趋势

不会算法。

输入更多字符以增强大模型学习

百度开发者中心

人工智能 深度学习 大模型

软件测试/人工智能丨利用人工智能 ChatGPT 自动进行测试需求分析

测试人

人工智能 软件测试

详细了解云堡垒机的作用,提高企业数据信息安全

行云管家

云计算 云服务 数据安全 企业上云 云堡垒机

TCP连接断开:为什么要挥手四次

华为云开发者联盟

开发 华为云 数据传输 华为云开发者联盟

文物数字化建模纹理贴图

3D建模设计

纹理贴图 模型渲染 材质纹理 材质编辑

小程序开发实战案例四 | 小程序标题栏如何设置

盐焗代码虾

支付宝 小程序开发 导航栏

非专业的建模人员如何给模型设置材质纹理贴图?

3D建模设计

材质贴图 纹理贴图 模型渲染 材质编辑

2023 年中国 IT 用户满意度调查结果公布,融云获评「中国数字化转型新锐企业」

融云 RongCloud

数字化转型 网络 IT 企业 政企

人工智能 | 利用ChatGPT自动生成基于PO的数据驱动测试框架

测吧(北京)科技有限公司

测试

人工智能 | 聊聊AutoGPT那些事儿

测吧(北京)科技有限公司

测试

ChatGPT插件:沉浸式体验人工智能

测吧(北京)科技有限公司

测试

一文搞懂得物前端监控

得物技术

大前端

【论文解读】System 2 Attention提高大语言模型客观性和事实性

合合技术团队

人工智能 自然语言处理 大模型 语言模型

企业如何通过熔断降级增强服务稳定性和系统可用性?

袋鼠云数栈

熔断 API 降级 数据服务 熔断降级

从零创建一个带action的GPT(1/2)

Bob Lin

AI ChatGPT LLM GPTs

大模型时代的自然语言处理利器

百度开发者中心

人工智能 大模型 Prompt

软件测试/人工智能|人工智能与自动化测试结合实战-探索人工智能在测试领域中的应用

霍格沃兹测试开发学社

人工智能 | LangChain 核心模块PromptsModelsParsers

测吧(北京)科技有限公司

测试

使用 Taro 开发鸿蒙原生应用 —— 当 Taro 遇到纯血鸿蒙 | 京东云技术团队

京东科技开发者

taro 前端 Web 鸿蒙Next

软件测试/测试开发|Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台

霍格沃兹测试开发学社

软件测试/人工智能|教你轻松玩转Edge浏览器

霍格沃兹测试开发学社

JavaScipt验证URL新方法(2023 年版)

凌览

JavaScript node.js 前端

AI/ML算法的公平性,偏差和对社会/经济的影响_ArchSummit_陈海春_InfoQ精选文章