最新发布《数智时代的AI人才粮仓模型解读白皮书(2024版)》,立即领取! 了解详情
写点什么

Python 数据挖掘与机器学习实战(四):用 Python 实现多元线性回归

  • 2020-02-01
  • 本文字数:4153 字

    阅读完需:约 14 分钟

Python数据挖掘与机器学习实战(四):用 Python 实现多元线性回归

编者按:本文节选自方巍著《Python 数据挖掘与机器学习实战》一书中的部分章节。

3.4 用 Python 实现多元线性回归

当结果值的影响因素有多个时,可以采用多元线性回归模型。例如,商品的销售额可能与电视广告投入、收音机广告投入和报纸广告投入有关系,可以有:


3.4.1 使用 pandas 读取数据

pandas 是一个用于数据探索、数据分析和数据处理的 Python 库。


import pandas as pd#获取数据data = pd.read_csv('/home/lulei/Advertising.csv')# 显示前5 项数据data.head()
复制代码


这里的 Advertising.csv 是来自http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv,大家可以自行下载。


上面代码的运行结果如下:


TV     Radio     Newspaper    Sales0      230.1      37.8       69.2       22.11      44.5       39.3       45.1       10.42      17.2       45.9       69.3       9.33      151.5      41.3       58.5       18.54      180.8      10.8       58.4       12.9
复制代码


上面显示的结果类似一个电子表格,这个结构称为 pandas 的数据帧(data frame),类型全称是 pandas.core.frame.DataFrame。


pandas 的两个主要数据结构是 Series 和 DataFrame;Series 类似于一维数组,它由一组数据及一组与之相关的数据标签(即索引)组成;DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典。


# 显示最后5 项数据data.tail()
复制代码


以上代码的作用是只显示结果的末尾 5 行,结果如下:


        TV     Radio    Newspaper    Sales195    38.2     3.7       13.8         7.6196    94.2     4.9       8.1          9.7197    177.0    9.3       6.4          12.8198    283.6    42.0      66.2         25.5199    232.1    8.6       8.7          13.4
复制代码


查看 DataFrame 的维度:


data.shape
复制代码


注意第一列叫索引,和数据库某个表中的第一列类似。结果如下:


(200,4)
复制代码

3.4.2 分析数据

分析数据的特征:


TV:在电视上投资的广告费用(以千万元为单位);


Radio:在广播媒体上投资的广告费用;


Newspaper:用于报纸媒体的广告费用;


响应:连续的值;


Sales:对应产品的销量。


在这个案例中,通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有 200 个观测值,每一组观测对应一个市场的情况。


注意:这里推荐使用的是 seaborn 包。这个包的数据可视化效果比较好。其实 seaborn 也属于 Matplotlib 的内部包,只是需要单独安装。


import seaborn as snsimport matplotlib.pyplot as plt# 使用散点图可视化特征与响应之间的关系sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales',     size=7, aspect=0.8) plt.show()                                  #注意必须加上这一句,否则无法显示#这里选择TV?Radio?Newspaper 作为特征,Sales作为观测值
复制代码


seaborn 的 pairplot 函数绘制 X 的每一维度和对应 Y 的散点图。通过设置 size 和 aspect 参数来调节显示的大小和比例。通过加入一个参数 kind=‘reg’,seaborn 可以添加一条最佳拟合直线和 95%的置信带。


sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales',    size=7, aspect=0.8, kind='reg')plt.show()
复制代码


如图 3-3 是运行后的拟合效果图。从图中可以看出,TV 特征和销量是有比较强的线性关系的,而 Radio 和 Sales 线性关系弱一些,Newspaper 和 Sales 线性关系更弱。



图 3-3 线性回归结果图

3.4.3 线性回归模型

线性回归模型具有如下优缺点。


  • 优点:快速;没有调节参数;可轻易解释;可理解。

  • 缺点:相比其他复杂一些的模型,其预测准确率不高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好地进行数据建模。


1.使用 pandas 构建 X(特征向量)和 y(标签列)


scikit-learn 要求是一个特征矩阵,是一个 NumPy 向量。pandas 构建在 NumPy 之上。因此,可以是 pandas 的 DataFrame,可以是 pandas 的 Series,scikit-learn 可以理解这种结构。


#创建特征列表feature_cols = ['TV', 'Radio', 'Newspaper']#使用列表选择原始DataFrame的子集X = data[feature_cols]X = data[['TV', 'Radio', 'Newspaper']]# 输出前5项数据print (X.head())
复制代码


检查 X 类型及维度,代码如下:


print (type(X))print (X.shape)
复制代码


输出结果如下:


      TV      Radio    Newspaper0    230.1     37.8       69.21    44.5      39.3       45.12    17.2      45.9       69.33    151.5     41.3       58.54    180.8     10.8       58.4<class 'pandas.core.frame.DataFrame'>(200, 3)
复制代码


查看数据集中的数据,代码如下:


#从DataFrame中选择一个Seriesy = data['Sales']y = data.Sales#输出前5项数据print (y.head())
复制代码


输出的结果如下:


0    22.11    10.42     9.33    18.54    12.9Name: Sales
复制代码


2.构建训练集与测试集


构建训练集和测试集,分别保存在 X_train、y_train、Xtest 和 y_test 中。


<pre name="code" class="python"><span style="font-size:14px;">##构造训练    集和测试集from sklearn.cross_validation import train_test_split   #这里是引用交叉验证X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1)# 75%用于训练,25% 用于测试print (X_train.shape)print (y_train.shape)print (X_test.shape)print (y_test.shape)
复制代码


查看构建的训练集和测试集,输出结果如下:


(150,3)(150,)(50,3)(50,)
复制代码


3.sklearn 的线性回归


使用 sklearn 做线性回归,首先导入相关的线性回归模型,然后做线性回归模拟。


from sklearn.linear_model import LinearRegressionlinreg = LinearRegression()model=linreg.fit(X_train, y_train)              #线性回归print (model)print (linreg.intercept_)           #输出结果print (linreg.coef_)
复制代码


输出的结果如下:


LinearRegression(copy_X=True, fit_intercept=True, normalize=False)2.66816623043[ 0.04641001  0.19272538 -0.00349015]
复制代码


输出变量的回归系数:


# 将特征名称与系数对应zip(feature_cols, linreg.coef_)
复制代码


输出如下:


[('TV', 0.046410010869663267), ('Radio', 0.19272538367491721), ('Newspaper', -0.0034901506098328305)]
复制代码


线性回归的结果如下:



如何解释各个特征对应的系数的意义呢?


对于给定了 Radio 和 Newspaper 的广告投入,如果在广告上每多投入 1 个单位,对应销量将增加 0.0466 个单位。也就是其他两个媒体的广告投入固定,在广告上每增加 1000 美元(因为单位是 1000 美元),销量将增加 46.6(因为单位是 1000)。但是大家注意,这里的 Newspaper 的系数是负数,所以可以考虑不使用 Newspaper 这个特征。


4.预测


通过线性模拟求出回归模型之后,可通过模型预测数据,通过 predict 函数即可求出预测结果。


y_pred = linreg.predict(X_test)print (y_pred)print (type(y_pred))
复制代码


输出结果如下:


[ 14.58678373   7.92397999   16.9497993   19.35791038  7.36360284  7.35359269   16.08342325  9.16533046   20.35507374  12.63160058  22.83356472  9.66291461   4.18055603   13.70368584  11.4533557  4.16940565   10.31271413  23.06786868  17.80464565  14.53070132  15.19656684  14.22969609  7.54691167   13.47210324  15.00625898  19.28532444  20.7319878   19.70408833  18.21640853  8.50112687  9.8493781    9.51425763   9.73270043   18.13782015  15.41731544  5.07416787   12.20575251  14.05507493  10.6699926   7.16006245  11.80728836  24.79748121  10.40809168  24.05228404  18.44737314  20.80572631  9.45424805   17.00481708  5.78634105   5.10594849]<type 'numpy.ndarray'>
复制代码


5.评价测度


对于分类问题,评价测度是准确率,但其不适用于回归问题,因此使用针对连续数值的评价测度(evaluation metrics)。


这里介绍 3 种常用的针对线性回归的评价测度。


  • 平均绝对误差(Mean Absolute Error,MAE);

  • 均方误差(Mean Squared Error,MSE);

  • 均方根误差(Root Mean Squared Error,RMSE)。


这里使用 RMES 进行评价测度。


#计算Sales预测的RMSEprint (type(y_pred),type(y_test))print (len(y_pred),len(y_test))print (y_pred.shape,y_test.shape)from sklearn import metricsimport numpy as npsum_mean=0for i in range(len(y_pred)):    sum_mean+=(y_pred[i]-y_test.values[i])**2sum_erro=np.sqrt(sum_mean/50)# 计算RMSE的大小print ("RMSE by hand:",sum_erro)
复制代码


最后的结果如下:


<type 'numpy.ndarray'><class 'pandas.core.series.Series'>50 50(50,) (50,)RMSE by hand: 1.42998147691
复制代码


接下来绘制 ROC 曲线,代码如下:


import matplotlib.pyplot as pltplt.figure()plt.plot(range(len(y_pred)),y_pred,'b',label="predict")plt.plot(range(len(y_pred)),y_test,'r',label="test")plt.legend(loc="upper right")                             #显示图中的标签plt.xlabel("the number of sales")                         #横坐标轴plt.ylabel('value of sales')                              #纵坐标轴plt.show()#显示结果
复制代码


运行程序,显示结果如图 3-4 所示(上面的曲线是真实值曲线,下面的曲线是预测值曲线)。


至此,整个一次多元线性回归的预测就结束了。



图 3-4 模拟效果比对图


图书简介:https://item.jd.com/12623592.html?dist=jd



相关阅读


Python数据挖掘与机器学习实战(一):Python语言优势及开发工具


Python数据挖掘与机器学习实战(二):Python语言简介


Python数据挖掘与机器学习实战(三):网络爬虫原理与设计实现


Python数据挖掘与机器学习实战(四):用 Python 实现多元线性回归


Python数据挖掘与机器学习实战(五):基于线性回归的股票预测


公众号推荐:

跳进 AI 的奇妙世界,一起探索未来工作的新风貌!想要深入了解 AI 如何成为产业创新的新引擎?好奇哪些城市正成为 AI 人才的新磁场?《中国生成式 AI 开发者洞察 2024》由 InfoQ 研究中心精心打造,为你深度解锁生成式 AI 领域的最新开发者动态。无论你是资深研发者,还是对生成式 AI 充满好奇的新手,这份报告都是你不可错过的知识宝典。欢迎大家扫码关注「AI前线」公众号,回复「开发者洞察」领取。

2020-02-01 16:202092

评论 1 条评论

发布
用户头像
👍
2021-10-13 12:50
回复
没有更多了
发现更多内容

Typora for Mac:一款极简风格Markdown写作软件

魔仙苹果mac堡

Typora破解 Mac软件 Markdown文本编辑器 Typora Mac下载

MySQL SQL脚本语句加上数据库存在判断

Andy

爆肝了!阿里最新版的这份Spring Security源码手册,狂揽GitHub榜首

做梦都在改BUG

Java spring spring security Spring Security OAuth

阿里“妈宝级”之作,Kubernetes原理剖析与实战应用手册,太全了

做梦都在改BUG

Java Kubernetes k8s

五十万字总结!2023最新Java面试八股汇总(含答案,收藏版)

采菊东篱下

Java 面试

ps神经滤镜是干什么的,神经滤镜的功能和作用

魔仙苹果mac堡

ps神经滤镜 PS2023破解 Neural Filters下载 Photoshop2023 Mac

DR5白金版 for mac(PS一键磨皮插件Delicious Retouch)支持ps2022 v5.0汉化版

Rose

DR5白金版 PS一键磨皮插件 dr5插件 汉化版PS插件 dr5插件教程

Java面试很难?啃完阿里老哥这套Java架构速成笔记,我都能拿30K

做梦都在改BUG

GitHub星标126K的京东「微服务进阶笔记」首次开源!好评如潮

Java你猿哥

Java 架构 微服务 Spring Cloud ssm

太牛了!在GitHub上“千金难求”的SpringBoot趣味实战课免费分享

Java你猿哥

Java spring Spring Boot ssm SpringBoot实战

MySQL Idea 启动主程序 无法识别时区

Andy

基于Redis讲解,学懂缓存雪崩,缓存击穿,缓存穿透

做梦都在改BUG

Java redis 缓存穿透 缓存击穿 缓存雪崩

耗时一周整理的牛客网上最火Java面试八股文,面试必备

架构师之道

Java 面试

软件测试/测试开发丨Web自动化 PageObject 设计模式

测试人

程序员 软件测试 自动化测试 测试开发 Web自动化测试

mac分屏功能怎么用?mac分屏软件推荐 magnet

魔仙苹果mac堡

Magnet中文版 Magnet破解版 mac分屏功能 Magnet Mac下载 苹果窗口管理软件

StarUML教程:CLI(命令行界面)功能的使用

魔仙苹果mac堡

StarUML教程 CLI(命令行界面) UML软件建模器 StarUML for Mac StarUML Mac破解下载

Java面试集锦

源字节1号

微信小程序 开源 软件开发 后端开发

国外顶级架构师编写2580页DDD领域驱动设计笔记,看到内容后破防了

做梦都在改BUG

Java 架构 领域驱动设计 DDD

学懂缓存雪崩,缓存击穿,缓存穿透仅需一篇,基于Redis讲解

Java你猿哥

Java redis 缓存击穿 缓存雪崩 Redis缓存穿透

Parallels Desktop如何退出账号?PD18虚拟机退出账号方法

魔仙苹果mac堡

Parallels Desktop下载 PD18虚拟机破解 Parallels如何退出账号

分布式事务的21种武器 - 7

俞凡

架构 云原生

智能工厂 | 联合汽车电子有限公司汽车驱动科技上海智能工厂

工赋开发者社区

关于Spring Cloud Alibaba,看阿里这篇笔记真香

Java你猿哥

分布式事务 微服务 Spring Cloud 服务治理 Spring Cloud Aliababa

阿里巴巴工程师1480道Java面试题及答案整理( 2023年 整理版)

Java你猿哥

Java MySQL redis JVM java面试

阿里巴巴Java开发手册(华山版)

Java你猿哥

Java MySQL ssm JAVA开发 Alibaba

Redis和MySQL的爱恨情仇!

Java你猿哥

Java MySQL redis ssm 缓存雪崩

软件测试/测试开发丨学习笔记之Web自动化测试

测试人

程序员 软件测试 自动化测试 测试开发 web自动化

工厂+策略在springboot项目中的使用场景

做梦都在改BUG

Java Spring Boot 工厂模式 策略模式

简直人生外挂,直接涨薪25K,跪谢这份Java性能调优实战宝典

做梦都在改BUG

Java 性能优化 性能调优

非常全面的 SpringBoot 保姆级笔记,面面俱到,太牛了

做梦都在改BUG

Java spring 微服务 Spring Boot 框架

利用springboot初始化机制三种实现策略模式的应用

Java你猿哥

Java spring Spring Boot 设计模式 ssm

Python数据挖掘与机器学习实战(四):用 Python 实现多元线性回归_大数据_方巍_InfoQ精选文章