AICon 深圳站 Keynote 嘉宾官宣!共探AI价值转化的实践路径 了解详情
写点什么

为什么大型机器学习模型必须缩小 ?

  • 2021-05-12
  • 本文字数:1387 字

    阅读完需:约 5 分钟

为什么大型机器学习模型必须缩小 ?

更大的规模不一定更适合机器学习。但是,随着研究人员相互竞争追求最先进的基准,深度学习模型和训练它们的数据集不断扩展。不管它们如何突破,更大的模型都会对预算和环境产生严重的影响。


比如 GPT-3,一个在去年夏天推出的大受欢迎的自然语言处理模型,据说花了1200 万美元用于训练。更有甚者,马萨诸塞大学阿默斯特分校(UMass Amherst)的研究人员发现,训练大型人工智能模型所需的计算能力能够产生 60 多万磅的二氧化碳排放——是普通汽车寿命周期排放量的 5 倍。


目前,没有迹象表明,以机器学习行业的发展速度,计算密集型工作将会放缓。OpenAI 的研究显示,深度学习模型的计算能力在 2012 到 2018 年间增长了惊人的 30 万倍,超过了摩尔定律。这个问题不仅仅是训练这些算法,而是要在生产环境下运行它们,或者说在推理阶段。对很多团队而言,由于纯粹的成本和资源的限制,深度学习模型的实际应用仍然遥不可及。


幸好,研究人员发现了一些新的方法来缩小深度学习模型,并通过更智能的算法来优化训练数据集,使得模型在生产环境下运行得更快,计算量也更少。就连业界的一个峰会也专门讨论低功耗、微型机器学习。剪枝(Purning)、优化(Quantization)和迁移学习(Transfer Learning)就是三种具体的技术。这些技术可以让那些无法投资数百万美元把模型转换成生产环境的组织实现机器学习的民主化。对“边缘”用例来说,这一点尤为重要,因为大型专用人工智能硬件在物理上并不切实际。


第一种技术,即剪枝,是近几年来研究的热点之一。包含“深度压缩”(Deep Compression)和“彩票假说”(Lottery Ticket Hypothesis)在内的高引用文献表明,可以在不损失正确性的情况下消除神经网络中“神经元”之间一些不必要的连接,有效地使模型更小、更容易在资源有限的设备上运行。最新的论文进一步验证并完善了早期的技术,以开发出更小的模型,使其达到更高的速度和正确度。对某些模型,比如ResNet,可以在不影响正确性的情况下剪枝 90% 左右。


第二种技术,即优化,也正在逐步普及。优化涉及许多不同的技术,它们可以将大的输入值转换为小的输出值。换句话来说,在硬件上运行神经网络可以产生上百万次乘和加运算。减少这些数学运算的复杂性有助于减少内存需求和计算成本,这将大大提高性能。


最后,虽然这不是一种缩小模型的技术,但是迁移学习能够在有限的数据中帮助训练一个新模型。迁移学习以预训练模型作为起点。通过有限的数据集,模型的知识可以“迁移”到一个新的任务中,而无需从头再来训练原始模型。在训练模型时,这是一种减少计算能力、能源和资金的重要方法。


最重要的启示是,模型可以(也应该)尽可能地优化,使其在较少的计算量下运行。在不牺牲性能和正确性的情况下,寻找减小模型大小和相关计算能力的方法将是机器学习的下一大突破。


如果能有更多人在生产环境中低成本地使用深度学习模型,我们就能真正看到现实世界中创新的新应用。这些应用可以在任何地方运行,甚至是在最小的设备上,以达到做出即使决定所需的速度和正确性。或许,小型模型最好的效果是整个行业能够减少其环境硬件,而不是每六年增加 30 万倍。


作者介绍:


Sasa Zelenovic,Neural Magiic 团队成员,帮助数据科学家发现开源、廉价的硬件加速器替代品,以实现深度学习性能。


原文链接:


https://www.datasciencecentral.com/profiles/blogs/honey-i-shrunk-the-model-why-big-machine-learning-models-must-go

2021-05-12 10:001670
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 577.8 次阅读, 收获喜欢 1981 次。

关注

评论

发布
暂无评论
发现更多内容

在线HTML转JSON工具

入门小站

工具

Linux 入门及常见Shell命令

宇宙之一粟

Linux Shell 5月月更

跨平台应用开发进阶(十二) :uni-app 实现应用桌面图标角标提示及应用跳转

No Silver Bullet

uni-app 5月月更 桌面角标

Artery —— 单页面应用接口描述语言简介

全象云低代码

前端 低代码 流程 页面 artery

架构实战营 - 第 6 期 模块六课后作业

天琪实刚亮

架构实战营

flask框架【入门学习笔记一】

恒山其若陋兮

5月月更

数学建模学习资料

乌龟哥哥

5月月更

SAP OData V4 模型支持的一些数据绑定模式

汪子熙

JavaScript 前端开发 SAP ui5 5月月更

如何透过 Serverless 与 API 的方式异步搜寻数据湖中的数据

亚马逊云科技 (Amazon Web Services)

Serverless 数据 API

1.1 历史长河中的顶层设计

凌晞

数据结构-复杂度计算经典案例

芒果酱

数据结构 算法 5月月更

react-router原理分析

正经工程师

React React-Router

[ CloudWeGo 社区动态 ] Kitex 电商项目案例

baiyutang

Go 微服务 5月月更

SpringMVC源码分析:POST请求中的文件处理

程序员欣宸

Java spring 5月月更

【刷题第16天】数组中出现次数超过一半的数字

白日梦

5月月更

C++最佳实践 | 1. 工具

俞凡

c++ 最佳实践

记一次 JMeter 压测 HTTPS 性能问题

阿里巴巴云原生

阿里云 云原生 https Jmeter 压测

架构学习(一)

爱晒太阳的大白

5月月更

从“数据”到“大数据”,激发数据潜力,深耕智能应用!

亚马逊云科技 (Amazon Web Services)

大数据 数据 智能开发

Kubernetes 节点弹性扩展实践组件 Amazon Karpenter:部署 GPU 推理应用

亚马逊云科技 (Amazon Web Services)

Kubernetes 部署

Amazon CodePipeline 与 GitHub 集成

亚马逊云科技 (Amazon Web Services)

GitHub Code

规模化软件开发的必由之路—大规模自动化测试

刘冉

自动化测试

跨平台应用开发进阶(十一) :uni-app 实现IOS原生APP-云打包集成极光推送(JG-JPUSH)详细教程

No Silver Bullet

uni-app ios 5月月更 云打包 原生APP

M_5: 设计微博系统中”微博评论“的高性能高可用计算架构。

Jadedev

架构训练营

WordPress 编辑用户

海拥(haiyong.site)

WordPress 5月月更

Linux环境编译静态库

Loken

音视频 5月月更

PostgreSQL出现死锁怎么办?

慕枫技术笔记

数据库 5月月更

LinkedList 源码分析-迭代器

zarmnosaj

5月月更

【C 语言】指针 Five 之 ["​⚔ 空指针 - NULL、💣 指针使用之前检查有效性、🗡 指针运算 💣 指针+- 整数、💣 指针 - 指针、指针关系运算、💣 标准规定、⚔ 指针和数组、⚔ 二级指针、⚔ 指针数组"]

謓泽

5月月更

密码学系列之:使用openssl检测网站是否支持ocsp

程序那些事

Java 密码学 程序那些事 5月月更

提效客户体验管理:结合 K-Means 聚类和 RFM 模型的客户分群

龙国富

RFM 客户分群 K-Means

为什么大型机器学习模型必须缩小 ?_AI&大模型_Sasa Zelenovic_InfoQ精选文章