写点什么

使用 Athena 替换 Hbase 实现对历史数据的查询分析

  • 2019-11-27
  • 本文字数:3677 字

    阅读完需:约 12 分钟

使用 Athena 替换 Hbase 实现对历史数据的查询分析

Apache HBase 是一种构建在 HDFS 之上的分布式、面向列的存储系统。在需要实时读写、随机访问超大规模数据集时,作为用户的首选分布式数据库;但 HBase 也有其局限性,譬如说不支持 SQL 语句查询,随着数据规模的变大,造成用户成本的大幅增加,其稳定性和故障恢复能力会变差,也给运维人员带来很大的挑战;我们在拜访客户时也发现有些用户将大量的历史数据和在线数据全部存储在 HBase 中也遇到了上述问题。因而本文将介绍一种帮助用户从 HBase 数据库中剥离出历史数据,减小 HBase 数据库的规模,提高其稳定性并大幅降低客户的成本,实现对历史数据的查询的方案。

Apache HBase 特点及应用场景

Apache HBase 是一个分布式,版本化,面向列的开源数据库,构建在 Aapche Hadoop 和 Aapche ZooKeeper 之上。它特别适合千万级的高并发海量数据的瞬间写入,而相对读数据量小的应用,支持存储结构化和非结构化数据和数据的多版本化。但它不适合大范围的扫描查询和支持多条件的查询,不支持基于 SQL 语句的查询。

Amazon Athena 特点及应用场景

Amazon Athena 是一种交互式查询服务,让您能够轻松使用标准 SQL 直接分析 Amazon S3 中的数据。只需在 AWS 管理控制台中单击几下,客户即可将 Athena 指向自己在 S3 中存储的数据,然后开始使用标准 SQL 执行临时查询并在数秒内获取结果。Athena 是 Serverless 服务,因此没有需要设置或管理的基础设施,客户只需为其执行的查询付费。它特别适合使用 Athena 处理日志、执行即席分析以及运行交互式查询。Athena 可以自动扩展并执行并行查询,因此可快速获取结果,对于大型数据集和复杂查询也不例外。


本次实验演示的 Demo 数据来自于纽约出租车公司公布的公开数据源 2017 年 1 月到 6 月份 Green Taxi trip 数据,下载链接:https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page。

准备模拟数据并上传到 S3 Bucket

登陆 AWS 管理控制台,创建 S3 bucket 命名为 nytaxisdata,然后创建三个文件夹分别命名为 green,hbasedata,hbaseexport 如下图所示:



处理数据


清理掉原始数据中的空格列,运行如下命令:


Bash


awk 'BEGIN{FS=OFS=","}{gsub(/ /,"-",$2);gsub(/ /,"-",$3);print $0}' green_tripdata_2017-01.csv |more
[hadoop@ip-172-31-28-170 ~]$ awk 'BEGIN{FS=OFS=","}{gsub(/ /,"-",$2);gsub(/ /,"-",$3);print $2,$3,$1,$6,$7}' green_tripdata_2017-01.csv >>greentrip01.csv
复制代码


如下图所示:



分别依次处理完对应的 6 个 excel 文件。然后将处理完的 2017 年 1 月到 6 月份的数据文件上传到 green 文件夹内,如下图所示:


创建 EMR 集群

登陆到 AWS 管理控制台,选择 EMR 服务,点击创建集群,如下图所示:



点击 Go to Advanced options,选择 Hadoop 和 HBase 服务如下图所示:



在 Storage Mode 中选择 S3,并设置上面刚创建的 bucket 路径 s3://nytaxisdata/hbasedata,如下图所示:



在 Hardware Configuration 设置中选择 Uniform instance groups,并设置网络,子网组及根卷大小,此处设置为 100G,如下图所示:



点击下一步,设置 EMR 集群的节点类型和实例数,如下图所示:



点击下一步输入集群名称 hbasecluster,其他默认即可,如下图所示:



点击 Next,设置 EC2 key pair,如下图所示:



点击 Create cluster,等待集群创建完成。

登陆 HBase 集群

创建一个表名为 taxiinfo 的表,指定列簇为 userinfo 和 Others,运行如下命令:


Bash


hbase(main):001:0> create 'taxiinfo','dropofftime','comno','others'
复制代码


如下图所示:


导入数据到 HBase 集群

运行如下命令:


Bash


sudo hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -Dimporttsv.separator="," -Dimporttsv.columns=HBASE_ROW_KEY,dropofftime,comno,others:distance,others:length taxiinfo s3://nytaxisdata/green/greentrip01.csv
复制代码


一次运行上面的命令将 greentrip01.csc 到 greentrip06.csv 文件全部导入到 hbase 数据库名为 taxiinfo 中。


统计表中的数据总行数,运行命令 count,如下所示:


Bash


hbase(main):002:0> count 'taxiinfo',INTERVAL=>100000
Current count: 100000, row: 2017-01-04-22:58:55
Current count: 200000, row: 2017-01-08-16:39:14
Current count: 300000, row: 2017-01-12-15:35:40
……
Current count: 4300000, row: 2017-06-04-03:39:03
Current count: 4400000, row: 2017-06-08-09:56:53
Current count: 4500000, row: 2017-06-11-18:32:27
Current count: 4600000, row: 2017-06-15-20:14:35
Current count: 4700000, row: 2017-06-19-13:37:54
Current count: 4800000, row: 2017-06-23-15:21:13
Current count: 4900000, row: 2017-06-27-14:46:20
4989642 row(s) in 257.1330 seconds
=> 4989642
复制代码


至此,验证 HBase 中的数据准备完毕。

剥离 HBase 数据库中的历史数据

根据需要用户可以将 HBase 数据库中的历史数据进行导出,HBase 数据库中的数据导出为 CSV 文件有多种方式,譬如自己编写 MapReduce 类实现,或者借助 Pig 应用等,本文采用 happybase 包实现。HappyBase 是方便开发人员通过 python 实现与 HBase 进行交互的开发库,通过编写 Python 脚本方式非常灵活的将任意条件的存储在 HBase 中的数据抽取处理转换成 CSV 文件。


安装 HappyBase


登陆到 EMR Master 节点,运行如下命令:


Bash


[hadoop@ip-172-31-36-88 ~]$ sudo pip install happybase
复制代码


如下图所示:



导出 HBase 数据


编写 Python 脚本如下所示:


Python


import happybase, sys, os, string
# 设置导出数据目录/mnt
# Output directory for CSV files
outputDir = "/mnt"
# HBase Thrift server to connect to. Leave blank for localhost
server = ""
# 连接到HBASE数据库
c = happybase.Connection(server)
# Get the full list of tables
tables = c.tables()
# 轮询数据库中的所有表
for table in tables:
# 写文件
file = open(outputDir + "/" + table + ".csv", "w")
t = c.table(table)
print table + ": ",
count = 0
for prefix in string.printable:
try:
for key, data in t.scan(row_prefix=prefix):
# 第一个key
if count == 0:
startRow = key
for col in data:
value = data[col]
column = col[col.index(":")+1:]
# 写行,列,值
file.write("%s, %s, %s\n" % (key, column, value))
count += 1
except:
os.system("hbase-daemon.sh restart thrift")
c = happybase.Connection(server)
t = c.table(table)
continue
# 最后一个key
endRow = key
print "%s => %s, " % (startRow, endRow),
print str(count)
复制代码


保存运行命令:


Bash


python hbase_export_csv.py
复制代码


如下图所示数据导出 4989642:



将导出的 csv 文件上传到 s3://nytaxisdata/exportdata 文件夹下,如下图所示:


使用 Amazon Athena 实现对历史数据的查询

打开 AWS Athena 管理控制台,运行如下命令:


Bash


CREATE EXTERNAL TABLE `hbaseexport`(
`col0` string,
`col1` string,
`col2` string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
's3://nytaxisdata/hbaseexport/'
复制代码


如下图所示:



数据查询


在 SQL 脚本编写区,运行如下查询:


Bash


SELECT * FROM "nymetadatastore"."hbaseexport" limit 10;
复制代码


如下图所示:


总结

通过本篇您将了解到如何使用使用 HappyBase 库编写 Python 脚本实现将 HBase 数据库中的历史数据的随意抽取并转换成 csv 文件,利用 Athena 实现对存储在 S3 上数据文件的访问。该方案可以帮助客户减小 HBase 集群,大幅降低数据的访问成本。


作者介绍:


!



### [](https://amazonaws-china.com/cn/blogs/china/tag/%E7%8E%8B%E5%8F%8B%E5%8D%87/)
王友升拥有超过13年的IT从业经验,负责基于AWS的云计算方案架构咨询和设计,推广AWS云平台技术和各种解决方案。在加入AWS之前,王友升曾在中地数码,浪潮,惠普等公司担任软件开发工程师、DBA和解决方案架构师。他在服务器、存储、数据库优化方面拥有多年的经验,同时对大数据、Openstack及人工智能和机器学习方面也进行一定的研究和积累。
复制代码


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/using-athena-to-replace-hbase-to-query-analyze-historical-data/


2019-11-27 08:001166

评论

发布
暂无评论
发现更多内容

上线半年客户数增长超300%,腾讯云音视频低代码互动直播组件释放全球开发者生产力

极客天地

docker启动mysql多实例连接报错Can’t connect to local MySQL server through socket ‘/var/run/mysqld/mysqld.sock’

刘大猫

人工智能 数据挖掘 机器学习 算法 数据分析

2025财务机器人选型全攻略:谁能成为企业“财务大脑”?

Techinsight

速卖通商品列表API秘籍!轻松获取商品列表数据

tbapi

速卖通商品数据采集 速卖通API 速卖通商品详情API 速卖通商品数据分析

大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流

武子康

Java 大数据 flink spark 分布式

恒图科技×火山引擎:为全球用户打造智能创作新体验

新消费日报

大数据公有云市场第一,阿里云占比47%!

阿里云大数据AI技术

行业分享丨汽车电磁兼容仿真技术与应用

Altair RapidMiner

人工智能 AI 汽车 仿真 CAE

企业内网IM:构建高效安全的企业内网即时通讯系统

BeeWorks

即时通讯 IM 私有化部署

MySQL 31 误删数据怎么办?

伤感汤姆布利柏

金融保险行业 AD 域自动化管理解决方案

运维有小邓

AD域 AD域管理

鸿蒙应用开发从入门到实战(七):ArkTS组件声明语法

程序员潘Sir

鸿蒙 HarmonyOS

时序数据库 Apache IoTDB 毕业五周年,“对暗号”获取你的蛇年 T 恤!

Apache IoTDB

揭秘 CDC 技术:让数据库同步快人一步

谷云科技RestCloud

数据传输 数据同步 ETL CDC 数据集成工具

Playwright MCP浏览器自动化教程

测吧(北京)科技有限公司

【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型

阿里云大数据AI技术

阿里云 大模型 通义千问 PAI

Chainlink Data Streams正式上线Sei网络,成为首选预言机基础设施

股市老人

EdgeOne Pages成为中小企业与开发者出海首选平台

极客天地

“融海计划”一周年,金融AI产业交出一张生态答卷

脑极体

AI

工具过多:如何管理前端工具泛滥?

掘金安东尼

从慕尼黑街头的伪装车,看汽车背后的“千锤百炼”

DevOps和数字孪生

【IEEE出版|上海理工大学主办】第六届大数据、人工智能与物联网工程国际会议(ICBAIE 2025)

搞科研的小刘

人工智能 大数据 国际学术会议 上海理工

AI Compass前沿速览:GPT-5-Codex 、宇树科技世界模型、InfiniteTalk美团数字人、ROMA多智能体框架、混元3D 3.0

汀丶人工智能

如何在 OpenShift 上部署和使用 KubeBlocks

小猿姐

k8s 容器化 Redshift

AI Agents 能自己开发工具自己使用吗?一项智能体自迭代能力研究

Baihai IDP

AI LLM AI Agent

第五届电气工程与机电一体化技术国际学术会议(ICEEMT 2025)

搞科研的小刘

国际学术会议 电器工程 机电一体化

腾讯会议AI功能用户量同比增长超150%

极客天地

重要:Java25正式发布(长期支持版)!

王磊

挖掘PDF生成器中的SSRF漏洞:从发现到利用

qife122

网络安全 SSRF

AI大模型如何生成PPT?7个主流PPT生成器大盘点

职场工具箱

PPT AI大模型 AIGC AI工具 AI生成PPT

纯电拐点,一场尚未到来的革命

脑洞汽车

AI

使用 Athena 替换 Hbase 实现对历史数据的查询分析_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章