AICon 深圳站 Keynote 嘉宾官宣!共探AI价值转化的实践路径 了解详情
写点什么

LineFlow 开源:比 PyTorch 简洁数倍,适用任何框架的 NLP 数据集处理程序

  • 2019-12-31
  • 本文字数:2771 字

    阅读完需:约 9 分钟

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序

一般来讲,用 PyTorch 处理自然语言比较繁琐。于是,国外一位开发者 Yasufumi TANIGUCHI 开发了 LineFlow,为了尽可能减轻编码的痛苦,并保证完成同样的任务。Yasufumi TANIGUCHI 表示,LineFlow 要比 PyTorch 简洁数倍,让我们来看看 LineFlow 究竟能简洁到什么地步?


对自然语言处理任务来说,你可能需要在预处理中对文本进行词法分析或构建词汇表。因为这个过程非常痛苦,所以我创建了LineFlow ,尽可能让整个过程干净整洁。真正的代码看起来是什么样子?请看下面的图,预处理包括词法分析、词汇表构建和索引。



左边部分是来自 PyTorch 官方示例仓库的示例代码,它对文本数据进行常见的预处理。右边部分是用 LineFolw 编写的,实现了完全相同的处理。看完对比之后,你应该明白 LineFlow 是如何减轻痛苦的。要查看完整的代码,可以访问此链接


在本文中,我将详细解释上图右边部分的代码,并讲解 LineFlow 的用法。

加载文本数据

文本数据的加载,是通过上面代码中的第 8 行完成的,我稍后会详细解释这个 map。lf.TextDataset 将文本文件的路径作为参数并进行加载。


dataset = lf.TextDataset(path, encoding='utf-8').map(...)
复制代码


lf.TextDataset 要求的数据格式是每行对应一个数据。如果文本数据满足此条件,则可以加载任何类型的文本数据。




加载之后,它将文本数据转换为列表。列表中的项对应于文本数据中的行。 请看下图,这是 lf.TextDataset 的直观图像。图中的 d 代表代码中的 dataset



LineFlow 已经提供了一些公开可用的数据集。所以你可以马上使用它。要查看提供的数据集,请访问此链接

2. 标记化

文本标记化也是通过第 8 行完成的。map将作为参数传递的处理应用到文本数据的每一行。


dataset = lf.TextDataset(...).map(lambda x: x.split() + ['<eos>'])
复制代码


请看下图。这是 lf.TextDataset.map 的直观图像。图中的 d 代表代码中的 dataset



让我们深入了解下面的实际处理过程。


lambda x: x.split() + ['<eos>']
复制代码


我们将文本数据中的每一行按空格拆分为标记,然后将 <eos>添加到这些标记的末尾。我们遵循 WikiText 官方页面上的处理方式。


此时,我们使用 str.split 进行标记化。我们可以使用其他的标记化方法,如 spaCyStanfordNLPBling Fire 等。例如,如果你想使用 Bling Fire,我们将得到以下代码。


>>> from blingfire import text_to_words>>> d = lf.TextDataset('/path/to/your/text')>>> d.map(text_to_words).map(str.split)
复制代码


另外,只要我们的处理将每行文本数据作为参数,就可以执行任何我们想要的处理。例如,我们可以计算标记的数量。在下面的代码中,标记的数量是在第二个元素中定义的。


>>> d = lf.TextDataset('/path/to/text')>>> d.map(tokenize).map(lambda x: (x, len(x)))
复制代码


当我们想要制作用于注意力机制或长短期记忆网络的掩码时,这种处理就很有用。

3. 索引

索引是由第 9 行到第 12 行完成的。这些行如下图所示。在这个代码块中,我们构建了词汇表和索引。让我们按顺序来查看这些内容。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)return torch.LongTensor(dataset.flat_map(...))
复制代码


首先我们将看到构建词汇表的代码块。在下面的代码块中,我们构建了词汇表。 flat_map 将作为参数传递的处理应用于数据中的每一行,然后对其进行扁平化。因此,我们将在 dataset.flat_map(lambda x: x) 之后获取单个标记。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)
复制代码


请看下图。这是 dataset.flat_map(lambda x: x) 的直观图像。图中的 d 代表代码中的 'dataset`。



flat_map 有点令人困惑,但它等同于下面的代码。


>>> from itertools import chain>>> chain.from_iterable(map(lambda x: x, dataset))>>>>>> dataset.flat_map(lambda x: x) # same as above
复制代码


在使用 flat_map 提取每个标记之后,我们将标记传递给 self.dictionary.add_word 来构建词汇表。我将不会解释它是如何工作的,因为这与本文无关。但如果你对它的内部实现感兴趣的话,请查看此链接


self.dictionary.add_word(word)
复制代码


接下来,我们将看到索引的代码块。索引是由一下的代码块来完成的。我们还使用 flat_map 来索引每个标记并使其扁平化。这是因为 PyTorch 的示例需要扁平化标记的张量,所以我们就这么做了。


dataset.flat_map(    [lambda x: self.dictionary.word2idx[token] for token in x)])
复制代码


请看下图。这是 dataset.flat_map(indexer) 的直观图像。图中的 d 代表代码中的 dataset



此代码等同于以下代码。


>>> from itertools import chain>>> chain.from_iterable(map(indexer, dataset))>>>>>> dataset.flat_map(indexer) # same as above
复制代码


最后,我们用 torch.LongTensor 将它包起来,把它变成张量。至此就完成了文本数据的加载。


return torch.LongTensor(dataset.flat_map(...))
复制代码


现在我们可以阅读完整的代码了,如下所示:


import osimport torchimport lineflow as lfclass Dictionary(object):    def __init__(self):        self.word2idx = {}        self.idx2word = []    def add_word(self, word):        if word not in self.word2idx:            self.idx2word.append(word)            self.word2idx[word] = len(self.idx2word) - 1        return self.word2idx[word]    def __len__(self):        return len(self.idx2word)class Corpus(object):    def __init__(self, path):        self.dictionary = Dictionary()        self.train = self.tokenize(os.path.join(path, 'train.txt'))        self.valid = self.tokenize(os.path.join(path, 'valid.txt'))        self.test = self.tokenize(os.path.join(path, 'test.txt'))    def tokenize(self, path):        assert os.path.exists(path)        dataset = lf.TextDataset(path, encoding='utf-8').map(lambda x: x.split() + ['<eos>'])        for word in dataset.flat_map(lambda x: x):            self.dictionary.add_word(word)        return torch.LongTensor(dataset.flat_map(            lambda x: [self.dictionary.word2idx[token] for token in x]))
复制代码


这就是全部的解释。LineFlow 通过对文本数据进行向量化来完成较少的循环和嵌套代码。我们可以使用 Python 的 map 来完成同样的工作。但是,LineFlow 为我们提供了可读的、干净的代码,因为它像管道(Fluent Interface)一样构建了处理过程。


如果你喜欢 LineFlow,并想了解更多信息,请访问 LineFlow 在 GitHub 的仓库


作者介绍:


Yasufumi TANIGUCHI,软件工程师,对自然语言处理有着浓厚的兴趣。本文最初发表于 Medium 博客,经原作者 Yasufumi TANIGUCHI 授权,InfoQ 中文站翻译并分享。


原文链接:


https://towardsdatascience.com/lineflow-introduction-1caf7851125e


2019-12-31 09:483417
用户头像
赵钰莹 极客邦科技 总编辑

发布了 897 篇内容, 共 687.2 次阅读, 收获喜欢 2696 次。

关注

评论

发布
暂无评论
发现更多内容

【SpringBoot】给你的 CommandLineRunner 排个序

遇见

Java Spring Boot

揭秘|为何程序员们能一直保持高收入?

丁长老

学习 程序员 写作 高薪

终极 Shell

池建强

Linux Shell

回"疫"录(1):口罩危机也许是一种进步

小天同学

疫情 回忆录 现实纪录

个人知识管理精进指南

非著名程序员

学习 读书笔记 知识管理 认知提升

Disruptor为何这么快

Rayjun

Java Disruptor

太慢是不行的

池建强

创业 产品

死磕Java并发编程(3):volatile关键字不了解的赶紧看看

Seven七哥

Java Java并发 volatile

我敢说 80% 的程序员都掉进了「老鼠赛跑」的陷阱

非著名程序员

读书笔记 程序员 程序人生 提升认知

用python爬虫保存美国农业部网站上的水果图片

遇见

Python GitHub 爬虫

理性主义和实证主义

王泰

理性主义 实证主义 哲学 软件工程

写作平台使用感受

小天同学

产品 体验 反馈

dubbo-go 中如何实现路由策略功能

joe

Apache 开源 微服务 dubbo Go 语言

最近的一些人生感悟

小智

人生 哲学

如何画一个闹钟

池建强

视觉笔记

关于HSTS - 强制浏览器使用HTTPS与服务器创建连接

遇见

https 安全 浏览器 TLS 证书

【SpringBoot】为什么我的定时任务不执行?

遇见

Java Spring Boot 定时任务 debug

软件世界中的个人英雄与团队协作

王泰

团队管理 软件工程 团队协作

敏捷(组织)转型的6个准备条件

Bob Jiang

团队管理 敏捷 组织转型

过滤数组中重复元素,你知道最优方案吗?

麦洛

数据结构 数组 数组去重

像经营咖啡店一样扩容 Web 系统

Rayjun

Web 扩容

Nginx代理Oracle数据库连接

遇见

MySQL nginx oracle 反向代理

死磕Java并发编程(6):从源码分析清楚AQS

Seven七哥

Java Java并发 并发编程 AQS

程序员陪娃看绘本之启示

孙苏勇

程序员 生活 读书 成长 陪伴

【SpringBoot】为什么我的 CommandLineRunner 不 run ?

遇见

Java Spring Boot

回"疫"录(2):不知者无畏

小天同学

疫情 回忆录 现实纪录

软件工程的史前时代 -- Therac-25 事件

王泰

质量管理 软件工程 软件危机 软件测试

Zoom的加密算法,到底有什么问题?

X.F

算法 编码习惯 产品设计 安全 编程语言

常用手机软件清单

彭宏豪95

效率工具 App 手机 移动应用

Facebook在用户增长到5亿时的扩容策略

Rayjun

团队管理 扩容

有关Kotlin Companion 我们需要了解到的几个知识点

王泰

Java 编程 kotlin 编程语言

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序_开源_Yasufumi TANIGUCHI_InfoQ精选文章