AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

Airbnb:用机器学习打响金融诈骗战

  • 2018-04-03
  • 本文字数:1756 字

    阅读完需:约 6 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

Airbnb ,一家旅行房屋租赁网站,正在使用机器学习技术来打击金融诈骗。他们用“定向摩擦”打击退款诈骗,与此同时,尽可能将该机制对于正常顾客使用在线预订系统的负面影响降到最低。

诈骗检测对 Airbnb 团队非常关键,因为每晚大约有二百万人在分布于 191 个国家的 Airbnb 房源入住。这意味着他们全球性社区的快速发展很大程度上依赖于信任。他们打击诈骗的方法包括主动措施和被动支持。主动措施通常应用在交易前,并且通常在后台进行:利用机器学习、试验和分析,防止欺诈者在网站上使用偷来的信用卡。

David Press 是 Airbnb 的信任数据科学家,他介绍了 Airbnb 是如何利用机器学习技术来鉴别和阻止诈骗者,同时将对正常顾客的影响降到最低。

退款是他们诈骗检测项目的主要关注点。与所有线上交易相同,Airbnb 也会遇到试图用盗取的信用卡进行交易的诈骗犯。当真正的持卡人发现他们的卡被盗了,并注意到账单上未经授权的消费,信用卡公司会向商家发起退款要求,然后商家(Airbnb)把钱返给消费者。与其他公司不同的是,Airbnb 承担这些退款的全部损失,而且不会让房主承担经济责任。所以为了更好地保护这个社区,并且减少退款损失,Airbnb 致力于对诈骗交易的源头进行打击:阻止盗用信用卡在网站的使用。

有时候交易会被直接拒绝,但在大多数情况下,Airbnb 会给用户机会,看他们是否满足附加验证条件,称为“摩擦”。 ”摩擦“是用来阻止未授权用户的一种方法,但对于正常用户来说是很容易满足的。为了防止信用卡盗用,会触发不同类型的“摩擦”机制来证明用户是信用卡的真正持卡人,包括微授权(在信用卡上放置两个小的授权码,持卡人必须通过登录网上银行进行确认), 3-D 安全(允许信用卡公司通过密码或短信直接验证持卡人),账单证明(需要持卡人上传一份相关信用卡帐单复印件)。

Press 介绍了他们如何使用机器学习模型来触发针对诈骗犯的“摩擦“。他还概述了如何通过最小化三个不同场景的损失函数来选择 ML 模型的阈值:假阳性、假阴性和真阳性。

他们使用机器学习模型来检测诈骗交易,用过去的已证实为良好消费和欺诈消费的例子进行训练,模型的目标是预测订单属于诈骗订单的概率。和其他机器学习模型一样,训练的模型并不是完美的,所以他们也需要处理不同的场景:假阳性、假阴性和真阳性。

  • 假阳性是指正常交易得分超过阈值,被模型分类成金融诈骗。
  • 假阴性是指诈骗情况得分低于模型阈值,被判断为正常交易。
  • 真阳性是指模型正确识别诈骗行为,其得分高于阈值。

Press 还介绍了每一种情况给 Airbnb 带来的损失。如果他们错误地对正常用户使用了“摩擦”(假阳性)机制,他们需要承担一定的损失,因为信用良好的用户可能会选择不配合完成”摩擦“,放弃交易,然后不再使用 Airbnb,造成客户流失。

对于假阴性,总损失是通过将假阴性的事件个数(FN)乘以每个诈骗交易的成本(C)计算出来的:FN*C。Airbnb 要承担与退款相关的所有损失,所以总成本是诈骗犯所诈骗的全部金额,再加上与处理相关的杂项费用,以及信用卡日益增加的拒绝率。

最后,对于真阳性交易(诈骗行为),Airbnb 应用“摩擦”来防止诈骗犯使用 Airbnb。如果“摩擦”机制成功地阻止了诈骗交易,就不会造成损失。

Airbnb 通过利用过去的阳性(诈骗)和阴性(非诈骗)订单来训练模型,优化机器学习模型的阈值。由于诈骗案例十分少见,这是一个不平衡的分类问题,缺乏正向标签。他们用真阳性率和假阳性率来描述模型在不同的阈值下识别诈骗和正常交易的能力,然后利用取决于这些比率的损失函数来评估与每个阈值相关的总成本。

Airbnb 使用他们的实验报告框架(Experiment Reporting Framenwork)运行 A / B 测试,来衡量由于“摩擦”机制使用不当(假阳性)对正常用户造成的影响。他们把得分较低的用户(基本排除诈骗可能)放在对诈骗者采用“摩擦“机制同一个实验阶段。

在博客中,Press 还演示了一个模拟示例,对比了直接拒绝交易和应用“摩擦“机制之间的不同。

查看英文原文 Fighting Financial Fraud with Machine Learning at Airbnb


感谢冬雨对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2018-04-03 19:001973
用户头像

发布了 52 篇内容, 共 31.8 次阅读, 收获喜欢 73 次。

关注

评论

发布
暂无评论
发现更多内容

滴滴 Flink-1.10 升级之路

Apache Flink

flink

云话题 | 第3期 你女朋友在买买买时,程序员小哥在干嘛?

阿里云Edge Plus

CDN 直播 直播带货

【内含福利】流行在CDN圈内的黑话有哪些?

阿里云Edge Plus

CDN

点赞系统软件开发

luluhulian

Linux-Lab 入门:体验

贾献华

Docker Linux 嵌入式 内核 Lab

十里选一终拿offer,准阿里java程序员分享面试经验!

Java架构之路

Java 程序员 架构 面试 编程语言

CodeDay#5 全程回顾——一场关于动态化开发实践的技术探讨

蚂蚁集团移动开发平台 mPaaS

mPaaS Codeday 技术沙龙

new的过程是怎样的?看完这一篇就懂了

codevald

Java JVM原理 面向对象编程 类对象

让机器人响应更快!阿里云 ARMS 助力深绘智能系统响应时长缩短50%

阿里巴巴中间件

万字长文详细总结!关于继承、重写与重载、封装、接口的硬核干货

codevald

Java 接口 封装、继承、多态 类对象

满满的干货!阿里开源Java程序员2021年金三银四面试指南

Java架构之路

Java 程序员 架构 面试 编程语言

Docker开启Remote API 访问 2375端口

wjchenge

Docker 2375端口

架构师 3 期 3 班 -week10- 作业

zbest

作业 week10

第三周

ALone

Elasticsearch 从 0 到千万级数据查询实践

📿

Java spring elasticsearch Spring Cloud spring data

这只猫在云端定居了?边缘计算在天猫精灵云应用上的落地实践

阿里云Edge Plus

CDN IoT 边缘计算 云桌面

教你10分钟解决短信验证码接口被盗刷、轰炸、恶意点击等问题。

香芋味的猫丶

短信防刷 短信验证码 短信防轰炸 短信防火墙

爱奇艺率先上线CUVA HDR标准内容,将多端支持该标准2021央视春晚直播、点播

爱奇艺技术产品团队

云讲堂 | 5期视频带你全面了解滴滴Logi-KafkaManager

滴滴云

kafka 运维 监控 滴滴Logi

List去除重复数据的五种方式

xcbeyond

Java ArrayList 28天写作

MySQL之父,MySQL官方,三大顶会齐赞,凭什么?

数据君

LeetCode题解:69. x 的平方根,二分查找,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

疫情又反扑,除了不乱跑,我们还能干点啥?

数据君

疫情成本遭不住?一招降本85%,架构特性全部公开!

数据君

字节面试太刁钻了:不加机器,怎么提升系统并发100倍

Java架构师迁哥

GraphX 在图数据库 Nebula Graph 的图计算实践

NebulaGraph

图数据库 图数据库实战

2020已过,2021来临,iOS 开发市场如何?一切都是未知!【未来可期】

ios 程序员

2020-21《全球质量报告》解读

BY林子

质量保障 质量赋能 敏捷测试

如何避免让微服务测试成为研发团队最大的瓶颈?

阿里巴巴中间件

技术方案设计的方法论及案例分享

阿里巴巴云原生

数据库 流计算 云原生 监控 存储

年终总结:华为|字节|腾讯|京东|网易|滴滴面经分享(斩获6个offer)

Java架构之路

Java 程序员 架构 面试 编程语言

Airbnb:用机器学习打响金融诈骗战_语言 & 开发_Srini Penchikala_InfoQ精选文章