2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

Airbnb:用机器学习打响金融诈骗战

  • 2018-04-03
  • 本文字数:1756 字

    阅读完需:约 6 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

Airbnb ,一家旅行房屋租赁网站,正在使用机器学习技术来打击金融诈骗。他们用“定向摩擦”打击退款诈骗,与此同时,尽可能将该机制对于正常顾客使用在线预订系统的负面影响降到最低。

诈骗检测对 Airbnb 团队非常关键,因为每晚大约有二百万人在分布于 191 个国家的 Airbnb 房源入住。这意味着他们全球性社区的快速发展很大程度上依赖于信任。他们打击诈骗的方法包括主动措施和被动支持。主动措施通常应用在交易前,并且通常在后台进行:利用机器学习、试验和分析,防止欺诈者在网站上使用偷来的信用卡。

David Press 是 Airbnb 的信任数据科学家,他介绍了 Airbnb 是如何利用机器学习技术来鉴别和阻止诈骗者,同时将对正常顾客的影响降到最低。

退款是他们诈骗检测项目的主要关注点。与所有线上交易相同,Airbnb 也会遇到试图用盗取的信用卡进行交易的诈骗犯。当真正的持卡人发现他们的卡被盗了,并注意到账单上未经授权的消费,信用卡公司会向商家发起退款要求,然后商家(Airbnb)把钱返给消费者。与其他公司不同的是,Airbnb 承担这些退款的全部损失,而且不会让房主承担经济责任。所以为了更好地保护这个社区,并且减少退款损失,Airbnb 致力于对诈骗交易的源头进行打击:阻止盗用信用卡在网站的使用。

有时候交易会被直接拒绝,但在大多数情况下,Airbnb 会给用户机会,看他们是否满足附加验证条件,称为“摩擦”。 ”摩擦“是用来阻止未授权用户的一种方法,但对于正常用户来说是很容易满足的。为了防止信用卡盗用,会触发不同类型的“摩擦”机制来证明用户是信用卡的真正持卡人,包括微授权(在信用卡上放置两个小的授权码,持卡人必须通过登录网上银行进行确认), 3-D 安全(允许信用卡公司通过密码或短信直接验证持卡人),账单证明(需要持卡人上传一份相关信用卡帐单复印件)。

Press 介绍了他们如何使用机器学习模型来触发针对诈骗犯的“摩擦“。他还概述了如何通过最小化三个不同场景的损失函数来选择 ML 模型的阈值:假阳性、假阴性和真阳性。

他们使用机器学习模型来检测诈骗交易,用过去的已证实为良好消费和欺诈消费的例子进行训练,模型的目标是预测订单属于诈骗订单的概率。和其他机器学习模型一样,训练的模型并不是完美的,所以他们也需要处理不同的场景:假阳性、假阴性和真阳性。

  • 假阳性是指正常交易得分超过阈值,被模型分类成金融诈骗。
  • 假阴性是指诈骗情况得分低于模型阈值,被判断为正常交易。
  • 真阳性是指模型正确识别诈骗行为,其得分高于阈值。

Press 还介绍了每一种情况给 Airbnb 带来的损失。如果他们错误地对正常用户使用了“摩擦”(假阳性)机制,他们需要承担一定的损失,因为信用良好的用户可能会选择不配合完成”摩擦“,放弃交易,然后不再使用 Airbnb,造成客户流失。

对于假阴性,总损失是通过将假阴性的事件个数(FN)乘以每个诈骗交易的成本(C)计算出来的:FN*C。Airbnb 要承担与退款相关的所有损失,所以总成本是诈骗犯所诈骗的全部金额,再加上与处理相关的杂项费用,以及信用卡日益增加的拒绝率。

最后,对于真阳性交易(诈骗行为),Airbnb 应用“摩擦”来防止诈骗犯使用 Airbnb。如果“摩擦”机制成功地阻止了诈骗交易,就不会造成损失。

Airbnb 通过利用过去的阳性(诈骗)和阴性(非诈骗)订单来训练模型,优化机器学习模型的阈值。由于诈骗案例十分少见,这是一个不平衡的分类问题,缺乏正向标签。他们用真阳性率和假阳性率来描述模型在不同的阈值下识别诈骗和正常交易的能力,然后利用取决于这些比率的损失函数来评估与每个阈值相关的总成本。

Airbnb 使用他们的实验报告框架(Experiment Reporting Framenwork)运行 A / B 测试,来衡量由于“摩擦”机制使用不当(假阳性)对正常用户造成的影响。他们把得分较低的用户(基本排除诈骗可能)放在对诈骗者采用“摩擦“机制同一个实验阶段。

在博客中,Press 还演示了一个模拟示例,对比了直接拒绝交易和应用“摩擦“机制之间的不同。

查看英文原文 Fighting Financial Fraud with Machine Learning at Airbnb


感谢冬雨对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2018-04-03 19:002187
用户头像

发布了 52 篇内容, 共 33.1 次阅读, 收获喜欢 73 次。

关注

评论

发布
暂无评论
发现更多内容

音视频处理三剑客之 ANS:噪声产生原因及噪声抑制原理解析

ZEGO即构

音视频课程 噪声抑制 ANS

从市场需求目标看数据分析演进方向

华为云开发者联盟

人工智能 华为云

GCC 为龙芯 CPU的预定义宏

mazhen

c++ RocksDB GCC 龙芯

InfoQ 极客传媒 15 周年庆征文|海王的鱼塘是怎样炼成的

知心宝贝

人工智能 大数据 运维 前端 InfoQ极客传媒15周年庆

Java—JVM

武师叔

6月月更

关于微服务通信的一些Tips

阿泽🧸

微服务 6月月更

如何编写一份简单易用的在线产品手册

小炮

产品宣传手册 产品说明手册

InfoQ 极客传媒 15 周年庆征文| 聊聊 Go 语言与云原生技术

宇宙之一粟

云原生 6月月更 InfoQ极客传媒15周年庆

python逆序输出和进制转化(小白也能看懂)

写代码两年半

Python 6月月更

LabVIEW Arduino无线蓝牙遥控智能车(项目篇—2)

不脱发的程序猿

LabVIEW Arduino VISA 无线遥控智能小车 无线蓝牙遥控智能车

5分钟了解红队如何搜索网络情报

穿过生命散发芬芳

6月月更 攻防演练

配置swagger

卢卡多多

swagger 6月月更

如何通过事件可视化分析?

清林情报分析师

数据分析 事件分析 可视化分析 时间分析

挑战最全 Apache Doris 学习资料,你想要的都在这里了!

SelectDB

数据库 Doris apache doris 技术干货

一文带你认识CSS

未见花闻

6月月更

数据库每日一题---第15天:未消费的顾客

知心宝贝

数据库 程序员 前端 后端 6月月更

python程序设计思想

左手の明天

Python 面向对象

如何设计BI平台

奔向架构师

数据仓库 商业智能 6月月更

在 Pisa-Proxy 中,如何利用 Rust 实现 MySQL 代理

SphereEx

MySQL 数据库 rust

考试试卷存储方案

极客土豆

跟着官方文档学 Python 之:3.12 新变化

甜甜的白桃

Python python3.x 6月月更

LabVIEW Arduino ZigBee无线气象站(项目篇—3)

不脱发的程序猿

物联网 LabVIEW Arduino ZigBee无线气象站 无线传感器

依图在实时音视频中语音处理的挑战丨RTC Dev Meetup

RTE开发者社区

音视频 RTC Dev Meetup 语音处理

GetxController 生命周期详解

岛上码农

flutter ios 前端 安卓 6月月更

力扣每日一练之二维数组下篇Day5

京与旧铺

6月月更

倒计时1天,龙蜥社区走进Intel MeetUp 即将开播!直播大奖等你来拿

OpenAnolis小助手

开源 intel Meetup 龙蜥社区 线上直播

leetcode 413. Arithmetic Slices 等差数列划分

okokabcd

LeetCode 算法与数据结构

HTTP接口性能测试中池化实践

FunTester

AntDB数据库与强网科技完成产品互认证,积极探索办公自动化领域

亚信AntDB数据库

vue生命周期

小恺

6月月更

2022-06微软漏洞通告

火绒安全

微软 漏洞 安全漏洞

Airbnb:用机器学习打响金融诈骗战_语言 & 开发_Srini Penchikala_InfoQ精选文章