写点什么

使用 TensorFlow 的递归神经网络(LSTM)进行序列预测

  • 2016-07-06
  • 本文字数:4120 字

    阅读完需:约 14 分钟

本篇文章介绍使用 TensorFlow 的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用 LSTM 模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。

所以呢,这里是基于历史观察数据进行实数序列的预测。传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情。

在这个例子里将预测几个函数:

  • 正弦函数:sin

  • 同时存在正弦函数和余弦函数:sin 和 cos

  • x*sin(x)

首先,建立 LSTM 模型,lstm_model,这个模型有一系列的不同时间步的 lstm 单元(cell),紧跟其后的是稠密层。

复制代码
def lstm_model(time_steps, rnn_layers, dense_layers=None):
def lstm_cells(layers):
if isinstance(layers[0], dict):
return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps']), layer['keep_prob'])
if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'])
for layer in layers]
return [tf.nn.rnn_cell.BasicLSTMCell(steps) for steps in layers]
def dnn_layers(input_layers, layers):
if layers and isinstance(layers, dict):
return skflow.ops.dnn(input_layers,
layers['layers'],
activation=layers.get('activation'),
dropout=layers.get('dropout'))
elif layers:
return skflow.ops.dnn(input_layers, layers)
else:
return input_layers
def _lstm_model(X, y):
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers))
x_ = skflow.ops.split_squeeze(1, time_steps, X)
output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
output = dnn_layers(output[-1], dense_layers)
return skflow.models.linear_regression(output, y)
return _lstm_model

所建立的模型期望输入数据的维度与(batch size,第一个 lstm cell 的时间步长 time_step,特征数量 num_features)相关。
接下来我们按模型所能接受的数据方式来准备数据。

复制代码
def rnn_data(data, time_steps, labels=False):
"""
creates new data frame based on previous observation
* example:
l = [1, 2, 3, 4, 5]
time_steps = 2
-> labels == False [[1, 2], [2, 3], [3, 4]]
-> labels == True [2, 3, 4, 5]
"""
rnn_df = []
for i in range(len(data) - time_steps):
if labels:
try:
rnn_df.append(data.iloc[i + time_steps].as_matrix())
except AttributeError:
rnn_df.append(data.iloc[i + time_steps])
else:
data_ = data.iloc[i: i + time_steps].as_matrix()
rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_])
return np.array(rnn_df)
def split_data(data, val_size=0.1, test_size=0.1):
"""
splits data to training, validation and testing parts
"""
ntest = int(round(len(data) * (1 - test_size)))
nval = int(round(len(data.iloc[:ntest]) * (1 - val_size)))
df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:]
return df_train, df_val, df_test
def prepare_data(data, time_steps, labels=False, val_size=0.1, test_size=0.1):
"""
Given the number of `time_steps` and some data.
prepares training, validation and test data for an lstm cell.
"""
df_train, df_val, df_test = split_data(data, val_size, test_size)
return (rnn_data(df_train, time_steps, labels=labels),
rnn_data(df_val, time_steps, labels=labels),
rnn_data(df_test, time_steps, labels=labels))
def generate_data(fct, x, time_steps, seperate=False):
"""generate data with based on a function fct"""
data = fct(x)
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps)
train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True)
return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test

这将会创建一个数据让模型可以查找过去 time_steps 步来预测数据。比如,LSTM 模型的第一个 cell 是 10 time_steps cell,为了做预测我们需要输入 10 个历史数据点。y 值跟我们想预测的第十个值相关。
现在创建一个基于 LSTM 模型的回归量。

复制代码
regressor = skflow.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
n_classes=0,
verbose=1,
steps=TRAINING_STEPS,
optimizer='Adagrad',
learning_rate=0.03,
batch_size=BATCH_SIZE)

预测 sin 函数

复制代码
X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9700, epoch #119, avg. train loss: 0.00082, avg. val loss: 0.00084
# Step #9800, epoch #120, avg. train loss: 0.00083, avg. val loss: 0.00082
# Step #9900, epoch #122, avg. train loss: 0.00082, avg. val loss: 0.00082
# Step #10000, epoch #123, avg. train loss: 0.00081, avg. val loss: 0.00081

预测测试数据

复制代码
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.000776

真实 sin 函数

预测 sin 函数

预测 sin 和 cos 混合函数

复制代码
def sin_cos(x):
return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x)
X, y = generate_data(sin_cos, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9500, epoch #117, avg. train loss: 0.00120, avg. val loss: 0.00118
# Step #9600, epoch #118, avg. train loss: 0.00121, avg. val loss: 0.00118
# Step #9700, epoch #119, avg. train loss: 0.00118, avg. val loss: 0.00118
# Step #9800, epoch #120, avg. train loss: 0.00118, avg. val loss: 0.00116
# Step #9900, epoch #122, avg. train loss: 0.00118, avg. val loss: 0.00115
# Step #10000, epoch #123, avg. train loss: 0.00117, avg. val loss: 0.00115

预测测试数据

复制代码
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.001144

真实的 sin_cos 函数

预测的 sin_cos 函数

预测 x*sin 函数 ```

def x_sin(x):
return x * np.sin(x)
X, y = generate_data(x_sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)

create a lstm instance and validation monitor

validation_monitor = skflow.monitors.ValidationMonitor(X[‘val’], y[‘val’], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X[‘train’], y[‘train’], validation_monitor, logdir=LOG_DIR)

> last training steps

Step #32500, epoch #401, avg. train loss: 0.48248, avg. val loss: 15.98678

Step #33800, epoch #417, avg. train loss: 0.47391, avg. val loss: 15.92590

Step #35100, epoch #433, avg. train loss: 0.45570, avg. val loss: 15.77346

Step #36400, epoch #449, avg. train loss: 0.45853, avg. val loss: 15.61680

Step #37700, epoch #465, avg. train loss: 0.44212, avg. val loss: 15.48604

Step #39000, epoch #481, avg. train loss: 0.43224, avg. val loss: 15.43947

复制代码
预测测试数据

mse = mean_squared_error(regressor.predict(X[‘test’]), y[‘test’])
print (“Error: {}”.format(mse))

61.024454351

复制代码
真实的 x\*sin 函数
![](https://static001.infoq.cn/resource/image/15/c0/15117ac90c23755ac54f86d2ae723fc0.png)
预测的 x\*sin 函数
![](https://static001.infoq.cn/resource/image/a2/58/a213b516943f882848665cdf35aea858.png)
译者信息:侠天,专注于大数据、机器学习和数学相关的内容,并有个人公众号:bigdata\_ny 分享相关技术文章。
英文原文:[Sequence prediction using recurrent neural networks(LSTM) with TensorFlow](http://mourafiq.com/2016/05/15/predicting-sequences-using-rnn-in-tensorflow.html)
2016-07-06 19:0023795
用户头像

发布了 43 篇内容, 共 28.9 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

重磅发布全总结丨一文看懂阿里云弹性计算年度峰会

阿里云弹性计算

弹性计算 年度峰会

什么是事实?什么是真相?

石云升

28天写作 12月日更

图解4种git合并分支方法

xcbeyond

git 分支合并 28天写作 12月日更

饿了么小程序容器首屏秒开优化实践

阿里巴巴终端技术

小程序 App 移动开发 客户端 小程序容器

语音信号处理2:语音信号处理的应用

轻口味

聊聊文章输出的背后

卢卡多多

28天写作 12月日更

C#中的属性

喵叔

28天写作 12月日更

清河机械:用宜搭建设工厂数字化系统,节省80%开发成本

一只大光圈

阿里巴巴 低代码 数字化转型 钉钉宜搭

枚举代替常量

李子捌

28天写作 21天挑战 12月日更

端侧AI进化论:HUAWEI HiAI Foundation的奇妙旅程

脑极体

Java访问修饰符的正确使用姿势

李子捌

Java 28天写作 21天挑战 12月日更

LabVIEW目标对象分类识别(理论篇—5)

不脱发的程序猿

机器视觉 图像处理 LabVIEW 目标对象分类 分类算法

语音信号处理3:语音信号处理的的整体结构

轻口味

“全”事件触发:阿里云函数计算与事件总线产品完成全面深度集成

阿里巴巴云原生

阿里云 云原生 函数计算 EventBridge

解决 ERROR: yaml.parser.ParserError: while parsing a block mapping

liuzhen007

28天写作 12月日更

一份前端够用的 Linux 命令

冴羽

vim Linux 前端 Shell 手册

LeetCode 刷完 500 题!我想明白了这些……

Charles

算法 刷题 经验总结 内卷 攻略

再获行业认可,火线安全入选「软件开发安全优秀厂商」

火线安全

模块七作业

doublechun

「架构实战营」

冬至说焦虑

张老蔫

28天写作

Dubbo框架学习笔记八

风翱

dubbo 12月日更

语音信号处理1:语音信号处理的发展

轻口味

晚安吻

mtfelix

28天写作

低代码数字化运营篇:那些返乡卖农产品的年轻人后来都怎么样了?

优秀

低代码 农产品

PassJava 开源 (二) :初始化数据库表和搭建管理后台

悟空聊架构

SpringCloud 28天写作 悟空聊架构 12月日更

你写,我“奖”|TDengine用户故事征集

TDengine

tdengine 热门活动

RTC月度小报6月丨编程挑战赛圆满收官;声网上市1周年回顾...

声网

人工智能 月度小报

智慧公安情报研判重点人员管控系统开发建设

a13823115807

智慧公安情报研判系统开发

数仓与主题域

圣迪

数据仓库 数据 数仓 主题域 主题

盘点 2021|拥抱变化,不负韶华

架构精进之路

程序人生 盘点2021

云原生时代,CNStack 如何解决企业数字化转型难题?

阿里巴巴云原生

阿里云 容器 云原生 技术中台 CNStack

使用TensorFlow的递归神经网络(LSTM)进行序列预测_语言 & 开发_Mourad_InfoQ精选文章