AICon 上海站|90%日程已就绪,解锁Al未来! 了解详情
写点什么

使用 Apache Hadoop、Impala 和 MySQL 进行数据分析

  • 2014-05-08
  • 本文字数:2104 字

    阅读完需:约 7 分钟

Apache Hadoop 是目前被大家广泛使用的数据分析平台,它可靠、高效、可伸缩。Percona 公司的 Alexander Rubin 最近发表了一篇博客文章介绍了他是如何将一个表从MySQL 导出到Hadoop 然后将数据加载到 Cloudera Impala 并在这上面运行报告的。

在 Alexander Rubin 的这个测试示例中他使用的集群包含 6 个数据节点。下面是具体的规格:

用途

服务器规格

NameNode、DataNode、Hive 元数据存储等

2x PowerEdge 2950, 2x L5335 CPU @ 2.00GHz, 8 cores, 16GB RAM, 使用 8 个 SAS 驱动器的 RAID 10

仅做数据节点

4x PowerEdge SC1425, 2x Xeon CPU @ 3.00GHz, 2 cores, 8GB RAM, 单个 4TB 驱动器

数据导出

有很多方法可以将数据从 MySQL 导出到 Hadoop。在 Rubin 的这个示例中,他简单地将 ontime 表导出到了一个文本文件中:

select * into outfile ‘/tmp/ontime.psv’
FIELDS TERMINATED BY ‘,’
from ontime;

你可以使用“|”或者任何其他的符号作为分隔符。当然,还可以使用下面这段简单的脚本直接从 www.transtats.bts.gov 上下载数据。

for y in {1988…2013}
do
for i in {1…12}
do
u=“ http://www.transtats.bts.gov/Download/On_Time_On_Time_Performance_${y}_${i}.zip
wget $u -o ontime.log
unzip On_Time_On_Time_Performance_${y}_${i}.zip
done
done

载入 ****Hadoop HDFS

Rubin 首先将数据载入到了 HDFS 中作为一组文件。Hive 或者 Impala 将会使用导入数据的那个目录,连接该目录下的所有文件。在 Rubin 的示例中,他在 HDFS 上创建了 /data/ontime/ 目录,然后将本地所有匹配 On_Time_On_Time_Performance_*.csv 模式的文件复制到了该目录下。

$ hdfs dfs -mkdir /data/ontime/
$ hdfs -v dfs -copyFromLocal On_Time_On_Time_Performance_*.csv /data/ontime/

Impala中创建外部表

当所有数据文件都被载入之后接下来需要创建一个外部表:

CREATE EXTERNAL TABLE ontime_csv (
YearD int ,
Quarter tinyint ,
MonthD tinyint ,
DayofMonth tinyint ,
DayOfWeek tinyint ,
FlightDate string ,
UniqueCarrier string ,
AirlineID int ,
Carrier string ,
TailNum string ,
FlightNum string ,
OriginAirportID int ,
OriginAirportSeqID int ,
OriginCityMarketID int ,
Origin string ,
OriginCityName string ,
OriginState string ,
OriginStateFips string ,
OriginStateName string ,
OriginWac int ,
DestAirportID int ,
DestAirportSeqID int ,
DestCityMarketID int ,
Dest string ,

ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’
STORED AS TEXTFILE
LOCATION ‘/data/ontime’;

注意“EXTERNAL”关键词和 LOCATION,后者指向 HDFS 中的一个目录而不是文件。Impala 仅会创建元信息,不会修改表。创建之后就能立即查询该表,在 Rubin 的这个示例中执行的 SQL 是:

> select yeard, count(*) from ontime_psv group by yeard;

该 SQL 耗时 131.38 秒。注意 GROUP BY 并不会对行进行排序,这一点不同于 MySQL,如果要排序需要添加 ORDER BY yeard 语句。另外通过执行计划我们能够发现 Impala 需要扫描大小约为 45.68GB 的文件。

Impala**** 使用面向列的格式和压缩

Impala 最大的好处就是它支持面向列的格式和压缩。Rubin 尝试了新的使用Snappy 压缩算法的Parquet 格式。因为这个例子使用的表非常大,所以最好使用基于列的格式。为了使用Parquet 格式,首先需要载入数据,这在Impala 中已经有表、HDFS 中已经有文件的情况下是非常容易实现的。本示例大约使用了729 秒的时间导入了约1 亿5 千万条记录,导入之后使用新表再次执行同一个查询所耗费的时间只有4.17 秒,扫描的数据量也小了很多,压缩之后的数据只有3.95GB。

Impala**** 复杂查询示例

select
min(yeard), max(yeard), Carrier, count(*) as cnt,
sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed,
round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate
FROM ontime_parquet_snappy
WHERE
DayOfWeek not in (6,7) and OriginState not in (‘AK’, ‘HI’, ‘PR’, ‘VI’)
and DestState not in (‘AK’, ‘HI’, ‘PR’, ‘VI’)
and flightdate < ‘2010-01-01’
GROUP by carrier
HAVING cnt > 100000 and max(yeard) > 1990
ORDER by rate DESC
LIMIT 1000;

注意:以上查询不支持 sum(ArrDelayMinutes>30) 语法,需要使用 sum(if(ArrDelayMinutes>30, 1, 0) 代替。另外查询故意被设计为不使用索引:大部分条件仅会过滤掉不到 30% 的数据。

该查询耗时 15.28 秒比最初的 MySQL 结果(非并行执行时 15 分 56.40 秒,并行执行时 5 分 47 秒)要快很多。当然,它们之间并不是一个“对等的比较”:

  • MySQL 将扫描 45GB 的数据而使用 Parquet 的 Impala 仅会扫描 3.5GB 的数据
  • MySQL 运行在一台服务器上,而 Hadoop 和 Impala 则并行运行在 6 台服务器上

尽管如此,Hadoop 和 Impala 在性能方面的表现依然令人印象深刻,同时还能够支持扩展,因此在大数据分析场景中它能为我们提供很多帮助。


感谢崔康对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-05-08 08:367739
用户头像

发布了 321 篇内容, 共 124.3 次阅读, 收获喜欢 19 次。

关注

评论

发布
暂无评论
发现更多内容

跨域问题(CORS / Access-Control-Allow-Origin)

xcbeyond

Java CORS 跨域

Java-技术专题-synchronized关键字

码界西柚

实践案例丨教你一键构建部署发布前端和Node.js服务

华为云开发者联盟

node.js 后端 服务器 代码 华为云鲲鹏

一个数据库管理员的自我救赎之路

华为云开发者联盟

数据库 华为云 数据库迁移 企业上云 DRS

MySQL索引问题探究手记

架构精进之路

MySQL 索引

面试官:你说你懂i++跟++i的区别,那你知道下面这段代码的运行结果吗?

程序员DMZ

JVM i++

恢复青春气息,就靠这套人像美肤算法了

博文视点Broadview

算法 计算机视觉 图像识别 人像

为啥PHP in_array(0,['a', 'b', 'c']) 返回为true?

架构精进之路

php 弱类型语言

ARTS week 4

锈蠢刀

云上安全工作乱如麻,等保2.0来一下

华为云开发者联盟

安全 华为云 等保 云平台 多云服务

我的敏捷历程 —— 兼评《敏捷整洁之道 - 回归本源》

FollowFlow

敏捷开发 Agile 极限编程 XP

spring Cloud Eureka Rest接口重写

xcbeyond

Java SpringCloud Eureka

程序范式的意义

soolaugust

架构 程序设计

面试必杀技,讲一讲Spring中的循环依赖

程序员DMZ

spring

如果你每次面试前都要去背一篇Spring中Bean的生命周期,请看完这篇文章

程序员DMZ

spring 生命周期

是时候学习Linux了

Simon

Linux

自从有了语音开黑小能手,队友再也不会骂我了!

anyRTC开发者

WebRTC 在线教育 直播 RTC RTMP

影响音视频延迟的关键因素(一):流媒体系统

ZEGO即构

TCP udp RTC HLS RTMP

CRM往事丨三件事,所有SaaS的缩影

人称T客

钓鱼网站:详解hosts文件

xcbeyond

Java 域名解析 hosts

区块链、人工智能……警惕非法金融借创新概念迷惑投资人

CECBC

区块链 金融

关于日期及时间字段的查询

Simon

MySQL sql查询

海量并发也没那么可怕,运维准点下班全靠它!

华为云开发者联盟

容器 网络 并发 华为云

MySQL关于日期为零值的处理

Simon

MySQL

枚举算法练习例题(Python版)

罗罗诺亚

Python 算法 枚举

SpringCloud服务注册中心双节点集群(Eureka集群)

xcbeyond

Java 架构 微服务 Eureka 集群

SWARM学习1——Kademlia分布式路由表协议

AIbot

区块链 DHT 分布式存储 分布式文件存储 分布式路由

易观郭炜:流动水系数造未来

易观大数据

操作系统bochs安装及使用

allworldg

操作系统

MySQL5.7升级到8.0过程详解

Simon

MySQL

低/零代码干掉了传统的开发模式

代码制造者

编程语言 低代码 零代码 信息化 编程开发

使用Apache Hadoop、Impala和MySQL进行数据分析_数据库_孙镜涛_InfoQ精选文章