AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

面向认知,智源研究院联合多家单位发布超大规模新型预训练模型“悟道·文汇”

  • 2021-01-13
  • 本文字数:3108 字

    阅读完需:约 10 分钟

面向认知,智源研究院联合多家单位发布超大规模新型预训练模型“悟道·文汇”

2021 年 1 月 11 日,北京智源人工智能研究院(以下简称“智源研究院”)发布面向认知的超大规模新型预训练模型“文汇”,旨在探索解决当前大规模自监督预训练模型不具有认知能力的问题。这一项目由智源研究院发起的“悟道”攻关团队完成,团队由智源研究院、阿里巴巴、清华大学、中国人民大学、中国科学院、搜狗、智谱.AI、循环智能等单位的科研骨干组成。


“文汇”模型不仅使用数据驱动的方法来建构预训练模型,还将用户行为、常识知识以及认知联系起来,主动“学习”与创造。本次发布的“文汇”模型与 1 月初 OpenAI 刚刚发布的 DALL·E 和 CLIP 这两个连接文本与图像的大规模预训练模型类似,“文汇”模型能够学习不同模态(文本和视觉领域为主)之间的概念,可以实现“用图生文”等任务,具有一定的认知能力。“文汇”模型参数规模达 113 亿,仅次于 DALL·E 模型的 120 亿参数量,是目前我国规模最大的预训练模型,并已实现与国际领先预训练技术的并跑。


自从 2020 年 5 月,OpenAI 发布迄今为止全球规模最大的预训练模型 GPT-3 以来,超大规模预训练模型就成为人工智能领域研究的热点。OpenAI、谷歌、Facebook 等国际 IT 公司都在持续推动大规模预训练模型的进一步发展。可以预测到的是,未来的 GPT-4 参数又会增大至少 10 倍,而且处理的数据将会更加多模态(文字、图像、视觉、声音)。


虽然 GPT-3 在多项任务中表现出色,但它最大的问题是没有常识,不具有认知能力。例如,向 GPT-3 提问第一个问题“长颈鹿有几个眼睛?”GPT-3 回答是两个眼睛,再提问第二个问题“我的脚有几个眼睛?”GPT-3 回答的结果也是两个眼睛,这就不符合人类常识。智源研究院学术副院长、清华大学计算机系唐杰教授认为,GPT-3 等超大型预训练模型在处理复杂的认知推理任务上,例如开放对话、基于知识的问答、可控文本生成等,结果仍然与人类智能有较大差距。


为推动研发我国自主的大规模预训练模型,解决目前国际主流模型存在的问题,2020 年 10 月,智源研究院启动了新型超大规模预训练模型研发项目“悟道”。此次发布的是“文汇”(面向认知的超大规模新型预训练模型)的一期研发成果,用于自动生成图片、文字以及视频,可具有初级认知能力。智源研究院院长、北京大学信息技术学院黄铁军教授指出,“文汇”模型针对性地设计了多任务预训练的方法,可以同时学习文→文、图→文以及图文→文等多项任务,实现对多个不同模态的概念理解。经过预训练的“文汇”模型不需要进行微调就可以完成“用图生文”等任务,对模型进行微调则可以灵活地接入如视觉问答、视觉推理等任务。

面向认知的大规模预训练模型“文汇”


“文汇”是面向认知的大规模预训练模型,项目研究组提出了针对多模态认知生成的大规模预训练的架构 M6:MultiModality-to-MultiModality Multi-task Mega-Transformer。模型整体架构基于 Transformer,其中图像进行切块并对块采用 ResNet-50 提取特征。这些特征以及对应的 position embedding 让图像和文本能组合在一起送入模型。团队针对性地设计了多任务预训练的方法,通过灵活的 mask 技巧实现多任务学习。



“文汇”模型能够完成多种图文生成任务,比如输入下图:



在阿里商品场景下微调的模型将给出描述:


旗袍是一种古典的风格,它不仅能够彰显出女性优雅气质,而且还具有很好的修饰身形。这款旗袍采用了经典的圆领设计,穿着舒适自在,同时又能够展现出女性柔美的颈部线条,让你更加的迷人。精致的绣花工艺,使得整件衣服看起来更加的精致,也更加的凸显出女性的魅力。


模型也可以同时接受文本的提示(Prompt)和图像,例如:



Prompt: 走进平定县宋家庄村,映入眼帘的是


文汇(M6 架构): 一座座古色古香的明清建筑,这里有着浓厚的历史文化底蕴和独特的民俗风情。走进村子,就像走进了一个童话故事里的世外桃源。村子里的房屋依山而建,错落有致地分布着各种各样的古建筑群,古朴典雅的建筑风格让人耳目一新。


与 GPT 不同,研究人员使用 Transformer-XL 来替换了 GPT 中原来的 Transformer 模型,从而能够生成超过 Transformer 的窗口长度(一般为 512)的文本。如下图所示,GPT-XL 架构能够生成基于人设的文本,较好的保持了内容一致性。



系统工程上,采用阿里统一多种并行策略的高性能、灵活、易用的分布式框架 Whale,使用模型并行+流水并行+数据并行训练进行分布式训练,256 卡训练速度是 8GPU 的 29.4 倍,加速比接近线性。基于中文百科、知乎、问答三类数据则由搜狗提供。

“文汇”模型应用即将上线


目前,“文汇”已支持基于认知推理的多种自然语言及跨模态应用任务,部分应用即将与搜狗、阿里巴巴、学堂在线、智谱.AI、循环智能等机构合作上线。目前已有四个样例应用可用于展示模型效果。

(一)基于上传图片的开放域问答


本应用基于图片文本的多模态认知预训练百亿模型,可以支持用户上传图片后,针对图片内容进行提问或生成图片的一句话描述。如上传图片后询问“图片中的电脑在水杯的什么位置?”或“生成对应商品图片的一句话描述”。将于未来大规模应用于阿里的电商场景。

(二)Talk to Data,用语言操作数据可视化


本应用基于数据可视化技术,通过将自然语言转化为可视化查询语句,从而达到“上传图表,输入指令,输出可视化图像”的功能目标。只需要一句自然语言的话,就可以实现数据的可视化自动统计与查询。


(三)基于预训练语言模型的诗词创作应用


本应用可以基于输入的诗歌题目、朝代、作者,生成仿古诗词。与传统基于规则或监督学习的诗歌生成不同,这个应用创作的诗歌来自于自然语言的生成,且无标注数据进行 fine-tune,并且可以模仿任意诗人创作任意新颖题目的诗歌。


下面是基于模型自动作诗的结果:


赠抗疫英雄

君王歌里赠英雄,百万雄师劈毒烟。

况是人民勤努力,更加众志与国捐。

团结团结再团结,万众一心战瘟神。

沔水桥边香雾起,暗送瘟神过汉阳。


咏智利日全食

六出奇光动地来,西方海国见旌旗。

水心惟有终无底,火内曾无彻上灰。

地轴迂回周八极,天球低陷不磨回。

明朝沧海成桑田,吾欲吹嘘弄大灰。

 

咏科举

输入的创作背景:此诗为作者高中状元,春风得意所做

青云有路状元郎,一步登天入翰林。

黄金榜上词臣贵,笑看人间进士郎。

掖庭宰相垂帘喜,尚书省郎入试忙。

荣登榜首魁星闪,不枉当年万户郎。

 

咏科举

输入的创作背景:此诗为作者屡试不中,名落孙山所做

金榜无名誓不归,只求大第是何年。

若教九品并孔目,学取天人第一流。

经天纬地才难用,万卷诗书济世游。

未到翰林先一日,十年共话九仙楼。


(四)可控人设的开放域问答


本应用支持用户上传问题,并生成具有人物角色风格的定制化文本回答。与传统的开放式问答不同,“文汇”模型生成的答案具有人设的语言特色,问答内容趣味横生。目前该应用将计划在搜狗的问答场景中使用。



“悟道”项目下一步研发计划


目前,“悟道”项目研究团队正在视觉等更广泛的范围内,对大规模自监督预训练方法开展探索研究,已经启动了四类大规模预训练模型研制,包括“文源”(以中文为核心的超大规模预训练语言模型)、“文汇”(面向认知的超大规模新型预训练模型)、“文澜”(超大规模多模态预训练模型)和“文溯”(超大规模蛋白质序列预训练模型)。


2020 年 11 月 14 日,智源研究院已发布了“文源”(以中文为核心的超大规模预训练语言模型)第一阶段 26 亿参数规模的中文语言模型。下一步,智源研究院将联合优势单位加快四类大规模预训练模型的研发进度。特别是“文汇”模型,未来将着力在多语言、多模态条件下,提升完成开放对话、基于知识的问答、可控文本生成等复杂认知推理任务的能力,使其更加接近人类水平。计划在今年 6 月实现“中文自然语言应用系统”“基于图文增强和知识融入的图文应用系统”“基于认知的复杂认知系统”等一批各具特色的超大规模预训练模型,以期达到对国际领先 AI 技术的赶超,尽快实现我国在国际 AI 前沿技术研究的领跑。

2021-01-13 15:261918

评论

发布
暂无评论
发现更多内容

架构师课作业 - 第十二周

Tulane

Redis 数据同步机制--主从模式

是老郭啊

redis 主从配置 主从同步 redis主从 主从复制

Docker私有化部署gitlab gitlab-runner

Leon

gitlab 持续集成 runner

内存型数据库Redis,是如何实现持久化的?

Zhongger

redis

XSKY全新一代SDS一体机五大场景之存储+灾备

XSKY星辰天合

鼓舞人心!主席支持数字经济!央行数字货币研究所为世界制定区块链相关国际标准

CECBC

区块链 金融

抽象可能从未停止过

架构师修行之路

系统设计 抽象 抽象思维

万字长文 | 23 个问题 TCP 疑难杂症全解析

yes

TCP 计算机网络

DB-Engines 9月数据库排名:ClickHouse一路猛冲,Redis坐稳第七

华章IT

MySQL 数据库 redis Clickhouse

LeetCode题解:225. 用队列实现栈,两个队列, 压入 - O(n), 弹出 - O(1),JavaScript,详细注释

Lee Chen

大前端 LeetCode

北京城市副中心将试点法定数字货币

CECBC

数字货币 货币

产业互联网成区块链与数字货币的分水岭

CECBC

区块链 数字货币 产业互联网

太赞了!华为工程师终于总结出了Linux归纳笔记,提供开放下载

小Q

又踩Maven的两个坑

xiaoboey

maven Unknown lifecycle phase settings.xml 无效 PowerShell

深入Spring Security魔幻山谷-获取认证机制核心原理讲解

朱季谦

spring security

使用amoeba实现mysql读写分离

小Q

Java MySQL 编程 程序员

喷一喷坑爹的面向UI编程

架构师修行之路

用 Python 实现一个简易版的 Pong 游戏 (一)

Matrix Chan

Python Turtle Python游戏

一个银行客户经理的“变形记”

华为云开发者联盟

人工智能 金融科技

深兰科技的征途,AI的赛场与战场

脑极体

深入浅出java虚拟机

AI乔治

Java 架构 性能优化 JVM JVM原理

为什么企业自主开发软件时,都会使用统一的模块化框架式开发平台?

Learun

敏捷开发 程序设计 开发工具 软件设计 技术方案

浅析LR.Net工作流引擎

Philips

敏捷开发 工作流 软件开发流程 开发工具

快来看看!AQS 和 CountDownLatch 有怎么样的关系?

程序员小航

Java AQS 源码阅读 CountDownLatch JUC

CPU中的程序是怎么运行起来的

良知犹存

cpu

云图说 | 一分钟带你扫盲云容器黑话

华为云开发者联盟

容器 节点 集群

正在走进现实的“飞行汽车”,能否颠覆地面交通?

脑极体

实战解读丨Linux下实现高并发socket最大连接数的配置方法

华为云开发者联盟

Linux TCP socket 高并发

大数据管理:构建数据自己的“独门独院”

华为云开发者联盟

大数据 数据湖

或许是史上最好的AQS源码分析了,你确定要错过?!

InfoQ_d2212957090d

【基础架构】不同场景下的数据存储技术,你用对了吗?

嘉为蓝鲸

网络 存储 系统 raid 磁盘挂载

面向认知,智源研究院联合多家单位发布超大规模新型预训练模型“悟道·文汇”_AI&大模型_智源研究院_InfoQ精选文章