10 月 23 - 25 日,QCon 上海站即将召开,现在大会已开始正式报名,可以享受 8 折优惠 了解详情
写点什么

推荐算法综述(五)

  • 2016-02-01
  • 本文字数:1877 字

    阅读完需:约 6 分钟

【编者的话】近年来社交媒体已经越来越流行,可以从中获得大量丰富多彩的信息的同时,也给我们带来了严重的“信息过载”问题。推荐系统作为缓解信息过载的最有效方法之一,在社交媒体中的作用日趋重要。区别于传统的推荐方法,社交媒体中包含大量的用户产生内容,因此在社交媒体中,通过结合传统的个性化的推荐方法,集成各类新的数据、元数据和清晰的用户关系,产生了各种新的推荐技术。本文总结了推荐系统中的几个关键研究领域,进行综述介绍。本文是推荐算法综述的最后一部分。第一部分主要介绍了推荐算法的主要类型。第二部分,主要涵盖了不同类型的协同过滤算法,突出他们之间的一些细微差别。第三部分详细介绍了基于内容的过滤算法。第四部分主要介绍了混合引荐技术和基于流行度的推荐方法。在这篇文章中,我们在回顾了所有基本的推荐算法之后,介绍了如何选择最合适的推荐算法。

注:本文翻译自 Building Recommenders ,InfoQ 中文站在获得作者授权的基础上对文章进行了翻译。

正文

本文是推荐算法综述的最后一部分。第一部分主要介绍了推荐算法的主要类型。第二部分,主要涵盖了不同类型的协同过滤算法,突出他们之间的一些细微差别。第三部分详细介绍了基于内容的过滤算法。第四部分主要介绍了混合引荐技术和基于流行度的推荐方法。在这篇文章中,我们在回顾了所有基本的推荐算法之后,介绍了如何选择最合适的推荐算法。

除了我们已经介绍的一些比较传统的推荐系统(例如流行度、协同过滤、基于内容的过滤、混合方法),目前还有许多的其他方法也可以用于增强推荐系统,包括:

  • 深度学习
  • 社会化推荐
  • 学习排序
  • 多臂 Bandit(探索 / 利用)
  • 张量因子分解和因子分解(情境感知的推荐)

这些更先进的和非传统的方法有利于将推荐系统的性能推高到一个新的水平,但实际上这些算法也存在不足,不太易于理解,而且在推荐插件中并没有很好地被支持。在实际应用中,相比一些更传统的方法而言,用户还需要考量执行更新的方法所带来的性能提升是否值得算法所花费的开销。根据我们的经验,基本的传统算法还将在实际系统中应用很久,并还将驱动一些伟大的产品的诞生。

在这个综述的系列文章中,我们想向读者介绍一些常见的推荐算法,包括基于用户的协同过滤算法、基于 item 的协同过滤算法、基于内容的过滤算法和混合方法。在这里,我们通过举一个简单的例子,提供了一个综合的阐述,当有相同的输入数据时,这四种不同的算法将为相同的用户产生如何不同的推荐结果(图 1)。在算法被应用到大的、真实的数据中时,这种差异会一直存在,所以在决定要使用哪种算法时需要考虑它们的优点和缺点,并且在评价它们的时候,还要考虑它们执行的好坏程度。

(点击放大图像)

图1:四种推荐系统算法被应用到相同的数据集时所产生的不同的推荐结果。在左边,我们以矩阵的形式给出了用户对于几个item 的偏好,以及要推荐的item 的标题列表。在中间,我们给出了四种不同的算法为第一个用户(即用户偏好矩阵中的第一行)所产生的推荐结果。按照显示的相似度度量,它们在相似度上有不同的定义。在右边,我们看到由每个推荐算法推荐的item,从上到下按照四种算法排序。

在实际应用中,如果你利用协同过滤算法作为你的推荐模型,一般不会出什么问题。协同过滤容易比其他算法产生更好的结果,但是它不能很好地处理新用户和新item 的冷启动问题,如果要处理这些问题,基于内容的推荐算法是一个很好的备选。如果你有时间,那么可以将这些方法进行组合,这样你就可以同时利用协同过滤算法和基于内容的推荐算法的优点。即使需要考察更为先进的推荐算法,在此之前,先好好考虑一下这些基本的算法也不失为一个好主意。

最后,需要紧紧牢记的是,推荐模型仅仅是推荐系统五个部件中的其中一个。付出努力将推荐模型正确建立起来是非常重要的,但是对于其他的所有部件,如数据收集和处理、后处理、在线模块和用户界面,做出正确的选择同样重要。正如我们一遍又一遍所强调的,该推荐算法仅仅是推荐系统中的一部分,你的决策需要考虑整个产品。

本文是一篇翻译稿,读者也可以参考英文原文

编后语

《他山之石》是InfoQ 中文站新推出的一个专栏,精选来自国内外技术社区和个人博客上的技术文章,让更多的读者朋友受益,本栏目转载的内容都经过原作者授权。文章推荐可以发送邮件到editors@cn.infoq.com。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-02-01 16:526754
用户头像

发布了 268 篇内容, 共 133.4 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

SpringDataJPA之关联关系

爱好编程进阶

Java 程序员 后端开发

大佬总结的4条宝贵经验,送给初入职场的你,从此一飞冲天

爱好编程进阶

Java 程序员 后端开发

【直播预告】程序员修炼之道——如何实现敏捷开发与稳健运行的有机统一

FinClip

程序员 小程序运营

「每日一问」并发编程的特性是什么

爱好编程进阶

Java 程序员 后端开发

厉害了!把 HashMap 剖析的只剩渣了!

爱好编程进阶

Java 程序员 后端开发

等保和分保的区别是什么?哪个更厉害?

行云管家

网络安全 等保 等级保护 分保

【刷题第十天】21. 合并两个有序链表

白日梦

5月月更

Tomcat介绍(三)

爱好编程进阶

程序员 后端开发

【Jvm】Jvm类加载机制

爱好编程进阶

Java 程序员 后端开发

使用APICloud AVM多端框架开发企业移动OA办公的项目实践

YonBuilder低代码开发平台

企业应用 APP开发 APICloud 多端开发 avm.js

“超级计算机”——GPU云服务器

Finovy Cloud

gpu GPU服务器 GPU算力

HTTP请求转发那些事:你可能不知道的Hop-by-hop Headers和End-to-end Headers

华为云开发者联盟

HTTP 请求转发 web 容器 F5

优化了MYSQL大量写入问题,老板奖励了1000块给我

爱好编程进阶

Java 程序员 后端开发

JAVA-使用注解实现Excel表头多语言导出

JayJay

5月月更

一文聊透 Netty IO 事件的编排利器 pipeline | 详解所有 IO 事件的触发时机以及传播路径

bin的技术小屋

网络编程 Netty java netty 5月月更

如何在缺乏商业项目经验的前提下成功通过面试,兼说我如何甄别非商业项目经验

爱好编程进阶

Java 程序员 后端开发

极光笔记 | 极光基于元数据驱动数据治理浅谈

极光GPTBots-极光推送

数据治理 元数据

编写自己的 WordPress 模板

海拥(haiyong.site)

WordPress 5月月更

云计算的云是指什么?最简单的解释是什么?

行云管家

云计算 云服务 私有云 混合云

令人欣慰!阿里大牛把Spring微服务架构设计整理成了500多页文档,真香

爱好编程进阶

Java 程序员 后端开发

AI简报-视频去交错(Deinterlance)

AIWeker

人工智能 深度学习 5月月更 去交错

讨论两种Redis中Token的存储方式

华为云开发者联盟

Token key 存储token userid

摆平各类目标检测识别AI应用,有它就够了!

华为云开发者联盟

计算机视觉 CANN 昇腾 目标检测识别 YoloV3

小型企业需要CRM系统的理由

低代码小观

CRM 企业管理系统 中小企业 CRM系统 客户关系管理系统

SpringloC容器的依赖注入源码解析(3)

爱好编程进阶

Java 程序员 后端开发

「2021-老胡的年终总结」

爱好编程进阶

程序员 后端开发

【解决】jsPDF之长图片生成PDF

爱好编程进阶

Java 程序员 后端开发

史上最全图解JVM,京东小哥带你了解性能提升100%背后的秘密武器

爱好编程进阶

Java 程序员 后端开发

推荐算法综述(五)_语言 & 开发_张天雷_InfoQ精选文章