10 月 23 - 25 日,QCon 上海站即将召开,现在购票,享9折优惠 了解详情
写点什么

基于 Logistict 回归的评分卡模型

  • 2020-03-22
  • 本文字数:1970 字

    阅读完需:约 6 分钟

基于Logistict回归的评分卡模型

1 评分卡分类


A 卡(Applicationscore card)新客户申请审批


  • 更准确地评估申请人的未来表现(违约率),降低坏帐率;

  • 加快(自动化)审批流程, 降低营运成本;

  • 增加审批决策的客观性和一致性,提高客户满意度;


B 卡(Behaviorscore card)现有客户管理


  • 更好的客户管理策略, 提高赢利;

  • 减少好客户的流失;

  • 对可能拖欠的客户,提早预警;


C 卡(Collectionscore card)早期催收


  • 优化催收策略,提高欠帐的回收率;

  • 减少不必要的催收行为,降低营运成本。

2 模型开发全流程

用一张图为大家展示,量化团队分析师开发评分卡模型的全流程,以及具体实现方式:



Step1:变量初选


通过等频分箱或最优分箱离散原始数据,计算 IV 值,剔除预测能力差的指标。


  • 信息值(information value,简称”IV”)是常用的进行自变量筛选的指标,计算简单,并且有经验的判断法则,IV 值的计算公式为:





Step2:变量剔除


通过变量聚类或者计算相关系数的方法剔除变量,这一步主要目的是解决多重共线性问题。多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。


Step3:数据离散化


数据离散化的目的是降低异常值的影响,同时增加模型的可解释性,通过 BESTKs、卡方合并、决策树等有监督算法将连续变量离散化几个区间,然后进行 WOE 转换。


  • 证据权重(Weight of Evidence,简称“WOE”)



WOE 是对原始自变量的一种编码形式,要对一个变量进行 WOE 编码,需要首先把这个变量进行分组处理(也叫离散化、分箱)。



Step4:初步建模


将原始指标用 WOE 进行替换后,用 logistic 回归估计参数,并剔除参数估计为负的变量。


下面让我们来了解一下信用评分卡模型所依赖的 Logistic 回归算法。何为“回归”呢?当有一些数据点,用一条直线对这些点进行拟合(该直线称为最佳拟合直线),这个拟合过程就叫回归。那么,利用 Logistic 回归进行分类的主要思想就是根据现有数据对分类边界线建立回归公式,以此进行分类。“回归”源于最佳拟合,即使用最优化算法,找到最佳拟合参数集。


  • Logistic 回归的实现:对于输入特征,每个特征乘以一个回归系数,将所有结果值相加带入 Sigmoid 函数中,从而得到一个 0~1 之间的数值,根据实际情况设定相关阈值,从而达到预测的目的。

  • 最优化算法:如何找到最优回归系数,是 Logistic 回归的关键问题。



即:找到上式的w\dot机器学习中常用的最优化算法有:梯度下降法(GradientDescent)、牛顿法和拟牛顿法(Newton’s method & Quasi-NewtonMethods)、共轭梯度法(Conjugate Gradient)等等,接下来简单介绍梯度下降法。


  • 梯度下降法(Gradient Descent):梯度下降即沿着某函数的梯度方向,找到该函数的最小值,如果梯度记为▽,则函数 f(x,y)的梯度为:



则梯度下降算法的迭代公式为:,其中,为步长。


Step5:人工干预


根据指标的业务意义、上下限、人数占比、违约比例调整分箱规则,即业务干预。


Step6:WOE 更新


人工干预后,得到新的分箱,根据新分箱,更新 WOE。


Step7:模型更新


更新完 WOE 之后,利用新的 WOE 值估计回归参数。


Step8:分数转化


根据 Logistic 回归估计的参数、分箱的 WOE 来确定每个区间的得分。


Step9:模型效果评估


我们利用 AUC、KS 等指标评估模型的预测能力。


  • AUC(Area Under Curve)


AUC 实际上就是 ROC 曲线下的面积,ROC 曲线反映了分类器的分类能力,结合考虑了分类器输出概率的准确性,AUC 量化了 ROC 曲线的分类能力,越大分类效果越好,输出概率越合理。


  • KS (Kolmogorov-Smirnov)


K-S 统计量被应用于信用评级模型主要是为了验证模型对违约对象的区分能力,是表现模型区分能力的验证指标;通常,如果模型的 K-S 统计量越大,表明模型区分正常客户和违约客户的能力越强。


Step10:模型监控


  • PSI (population stability index)


系统稳定性指数,主要考察了模型预测结果的稳定性,通过对建模样本和监控样本中客户的评分或评级分布的比较来判断模型预测结果的稳定性。系统稳定性指数越小,越稳定,表明监控样本的分数的分布情况和建模样本中的情况越相似,可以预期模型在监控样本中的性能表现和建模样本中的性能表现会很接近。


Step11:评分


下面的小示例,简单为大家展示评分卡及其计分模式:



如果该模型的基础分是 50 分,比如有个客户,大专毕业,男性,拥有自有住房,工作 10 年以上,那么他的分数就应该是:Score=50+14+9+24+12=109。

3 总结

本文介绍了基于 Logistic 回归的评分卡模型的实现流程,介绍了 Logistic 算法、IV 值和 WOE,以及评价模型的指标 AUC、ks 值、PSI 等。在实际应用中,评分卡模型的作用日渐突出。量化团队根据业务需要开发各种不同评分卡模型,并尝试不同算法建模,试图更加科学、准确地构建模型,降低误判率,增加审批的客观性,提高客户的满意度。


2020-03-22 21:042477

评论

发布
暂无评论
发现更多内容

数字人民币有望为全球贸易结算开辟新视窗

CECBC

Python3 Note 函数注解

awen

Python Function 函数注解

Python3 Note __slots__

awen

Python slots

净筹6亿美元:微盟正在加速拉开差距

ToB行业头条

SaaS 微盟

智慧工厂VR拆解零件——3D虚实现实可视化系统

一只数据鲸鱼

数据可视化 工业互联网 vr 智慧工厂 零件拆解

模块五总结

竹林七贤

苏州源控电子科技怎么样?名副其实的行业新星

Geek_8a195c

☕️【Java技术之旅】深入学习JIT编译器实现机制(原理篇)

码界西柚

Java 编译器 JIT 6月日更

Android studio 在外置硬盘运行项目报.lock 的错误

三爻

flutter android Mac Android Studio

个推CTO谈数据中台(上):从要求、方法论到应用实践

个推

大数据 数据中台 数字化转型 数据智能

六一限定,致每一个追光者

白洞计划

因为一个字符校对问题,我的大厂面试挂了

华为云开发者联盟

MySQL 字符 字符校对 语句 MySQL5.7

用敏捷扑克做需求评审的3大优势,你get了吗?

LigaAI

高效工作 团队管理 产品思考

NUCLEO-L432KC实现GPIO控制(STM32L432KC)

不脱发的程序猿

嵌入式 stm32 单片机 NUCLEO-L432KC STM32L432KC

工业制造业在数字化时代的三大发展方向

CECBC

全球案例 | 一家财富500强公司利用 Jira 和 Jira Align 将万人级团队的生产力提高了 30%

Atlassian

管理 DevOps 敏捷 Jira 协同办公

Python3 Note 对象初始化

awen

Python 生命周期 对象初始化

Serverless over Storage

焱融科技

云计算 容器 云原生 高性能 文件存储

从VMWare安装到Nginx配置

wildpig

nginx vmware Centos 7

GitHub上收录400余篇任正非的讲话稿

不脱发的程序猿

GitHub 开源 程序人生 任正非讲话

BoCloud博云微服务平台3.0正式发布:让微服务转型路径更清晰

BoCloud博云

微服务

六一儿童节,看我用ModelArts让8090梦回童年

华为云开发者联盟

AI 美食 童年 modelarts 六一

一文带你认识队列数据结构

华为云开发者联盟

Java 数据结构 数组 队列

mPaaS 月度小报 | 应用上线前都应该检查哪些指标?CodeHub#5回顾:小程序容器加持下的技术架构“提质增效”

蚂蚁集团移动开发平台 mPaaS

小程序 移动开发 mPaaS

计算机视觉常用图像数据集标记平台

不脱发的程序猿

人工智能 计算机视觉 图像处理 图像数据集标记平台

“图发展”与“保安全”:大数据今后怎么玩?

CECBC

webRTC探索音视频的录制的实现

云小梦

JavaScript WebRTC 浏览器API

实现接口幂等性的四种方案!

李阿柯

面试 编程之路 幂等性

安迈云首席战略官于晓晖:去中心化云计算构建Web3.0世界

DT极客

【LeetCode】包含min函数的栈Java题解

Albert

算法 LeetCode 6月日更

人生算法:涌现,在自己身上发挥群体智慧

石云升

读书笔记 6月日更

基于Logistict回归的评分卡模型_文化 & 方法_京东数字科技产业AI中心_InfoQ精选文章