10 月 23 - 25 日,QCon 上海站即将召开,现在购票,享9折优惠 了解详情
写点什么

强化学习在推荐算法的应用论文整理(一)

  • 2019-11-29
  • 本文字数:1934 字

    阅读完需:约 6 分钟

强化学习在推荐算法的应用论文整理(一)

一. 京东在强化学习的几篇文章


Deep Reinforcement Learning for List-wise Recommendations


本文将推荐的过程定义为一个序列决策的问题,通过 Actor-Critic 算法来进行 List-wise 的推荐。


模型结构:Actor-Critic



主要贡献:


  • 构建了一个线上环境仿真器,用于输出从未出现过的状态动作对的奖励,然后可线下对 Actor-Critic 网络参数进行训练。

  • 构建了基于强化学习的 List-wise 推荐系统。


  1. Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning


主要创新点:考虑负反馈以及商品的偏序关系,并将这种偏序关系建模到 DQN 的 loss 函数中。


若一个商品能够找到其偏序关系(两个商品必须是同一类别,用户反馈不同,推荐时间要相近)的物品,此时模型即希望预估的 Q 值和实际的 Q 值相近,同时又希望有偏序关系的两个商品的 Q 值差距越大越好。


框架:



  1. Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems


新颖处:状态中加入了用户的反馈、停留时长。


MDP 建模:


  • 状态:初始的状态 s1={u},即只有用户的信息。当进行了第一次推荐后,状态变为 s2={u,(i1,f1,d1)}。当推荐过 t-1 个物品后,状态 st = {u,(i1,f1,d1),(i2,f2,d2),…,(it-1,ft-1,dt-1)}。即 st = st-1 + {(it-1,ft-1,dt-1)}。这里 it-1 代表第 t-1 时刻推荐的物品,ft-1 表示用户对物品 it-1 作出的反馈,dt-1 表示用户对推荐的物品 it-1 的停留时间。

  • 动作:可推荐的物品的集合,时刻 t 的动作就是该轮推荐的物品 it。

  • 状态转移概率:p(st+1| st,it)

  • 奖赏:点击次数、滑动深度和用户下次访问 APP 的时间奖励这三者的加权平均。

  • 模型分为 Q 网络和 S 网络,其中 Q 网络来拟合状态动作对的价值函数,S 网络是一个仿真环境,用于输出奖赏值。



可以看到最终的 state 表示是(4 个 LSTM 模块提取的输出 + 用户的 embedding) +item 的 embedding 表示,模型的更新和传统的 DQN 没什么区别。这里为什么要用 4 个 LSTM 呢?因为只用一个 LSTM 的话,正向行为(点击或购买)的信息容易被大都数负向行为所冲刷掉。并且用户不同的行为都有自己的特征。比如点击行为通常表现出用户的当前兴趣偏好;购买行为表现出用户的兴趣转移过程等等。



输出共有四部分,分别是预测用户的反馈形式、预测用户的停留时间、预测用户再次进入 App 的时间间隔、预测用户是否会关闭 APP。通过训练,得到的模型就可以去预估奖赏值,从而构造完整的 transition 样本用于 Q 网络的训练。


  1. Toward Simulating Environments in Reinforcement Learning Based Recommendations


基于 gan,提出了一种 RL 的仿真环境,用于产生训练数据。有 gan 就会有 generate 和 discriminator,其中 generate 的结构为:



为 encoder-decoder 结构,其中 encoder 的输入为用户的浏览序列 e+f(商品+用户对商品的反馈),然后经过 embedding 层,然后再 concat 起来,最后通过 GRU 层得到最终的 hidden state,表示用户当前的偏好。Deocder 的目标是预测下一个要推荐给用户的商品,输入是用户当前的偏好,经过多层的 MLP 得到一个向量。为了得到一个具体推荐的商品,可以拿所有待推荐的商品 embedding 分别和 decoder 输出的向量计算相似度,选择相似度最高的一个商品推荐给用户。


Discriminator 结构:



上图左下角的输入和 generator 一样,但是参数不同。右下角把真实的推荐商品和 generator 生成的推荐商品作为输入,经过两层 MLP 得到输出 [公式],然后将两部分输出 concat 起来经过 MLP 和 softmax 层得到最终的输出,长度为 2*K,其中 K 代表用户反馈类型的种类。输出结果为:



输出前 k 维表示如果这个输入的是真实的商品(这里的真实商品即用户在当前状态下,下一个实际浏览的商品)的话,用户的每种反馈的概率,后 K 维表示,如果这个输入是 Generator 产生的话,用户的每种反馈的概率。


那么怎么训练 Discriminator 和 Generator 呢?对于 Discriminator 来说共有两个目标,判断输入是真实的商品还是 Generator 产生的,同时,要保证用户真实的反馈和 Discriminator 得到的用户反馈类型分布的差距要大。对于 Generator 来说,同样有两部分的损失,一是希望能尽可能骗过 Discriminator,使得 Discriminator 将 Generator 产生的推荐商品判别为假的概率越低越好,二是希望产生的推荐商品向量,与真实序列中下一个商品的向量距离越近越好。


总结来说,使用 GAN 还是为了解决 RL 应用在电商领域中的一些限制:比如商品和用户数量巨大,导致整个的状态空间和动作空间十分巨大,每个用户的训练样本较稀疏,这样直接训练会导致模型不鲁棒,上线实验也会造成用户体验的损害。使用 GAN 来产生一些离线训练样本会一定程度上解决该问题。


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/77332847


2019-11-29 11:401978

评论

发布
暂无评论
发现更多内容

NodeJS mysql需要注意sql注入 🎈

德育处主任

Node SQL注入 6月月更

今天 2 点:关于龙蜥社区云原生 SIG 及安全容器 runD 介绍 | 第 24 期

OpenAnolis小助手

开源 云原生 虚拟化 sig 龙蜥大讲堂

北京Java培训 | java设计模式之原型模式

@零度

JAVA开发 原型设计模式

Flink CDC MongoDB Connector 的实现原理和使用实践

Apache Flink

mongodb 大数据 flink 流计算 实时计算

5000字解析:实战化场景下的容器安全攻防之道

青藤云安全

网络安全 容器安全 攻防演练

Linux下玩转nginx系列(六)---nginx实现cache(缓存)服务

anyRTC开发者

nginx Linux 缓存 音视频 服务器

linux 密钥登录

CRMEB

百度交易中台之钱包系统架构浅析

百度Geek说

系统架构 百度app

高效远程办公手册| 社区征文

程序员-小江

初夏征文

我把 b 站拉黑了!

博文视点Broadview

浅聊一下数据监控(针对MSSQL)

为自己带盐

SqlServer 数据监控 6月月更

视频一对一源码,简单的搭建方式也有技术要求

开源直播系统源码

软件开发 二次开发 一对一源码

SAP Marketing Cloud Restful API SDK 使用案例分享

汪子熙

云计算 SaaS SAP 6月月更 Marketing Cloud

居家办公初体验之新得分享| 社区征文

阿Q说代码

居家办公 初夏征文 心得分享

《网络是怎么样连接的》读书笔记 - ADSL

懒时小窝

网络编程

Apache ShardingSphere 5.1.2 发布|全新驱动 API + 云原生部署,打造高性能数据网关

SphereEx

云原生 ShardingSphere 版本更新

中国信通院首届3SCON软件供应链安全会议成功召开 聚焦软件供应链全链路安全

中国IDC圈

安全 软件安全

啃论文俱乐部 | 压缩算法团队:我们是如何开展对压缩算法的学习研究

OpenHarmony开发者

OpenHarmony

百问百答第43期:应用性能探针监测原理-PHP探针

博睿数据

智能运维 博睿数据 性能监测 百问百答

C#入门系列(二十一) -- 面向对象之继承

陈言必行

C# 6月月更

知识管理系统有效推动中小企业信息化发展

小炮

浅谈SpringMVC五大组件以及对执行原理的分析

百思不得小赵

springmvc Java EE 6月月更

小程序直播互动功能运行在App里?

Speedoooo

小程序 直播带货 移动开发 直播技术 小程序容器

浅谈德州扑克AI核心算法:CFR

行者AI

人工智能 AI 强化学习

CVPR2022 | 上科大x小红书首次提出动作序列验证任务,可应用于体育赛事打分等多场景

小红书技术REDtech

Transformer CVPR2022 视频动作理解 动作序列验证

西安Java培训 | java设计模式之工厂设计模式

@零度

设计模式 JAVA开发

见证荣耀|长三角区块链应用创新大赛复赛于旺链科技成功举办

旺链科技

区块链 产业区块链 区块链应用创新

PingCAP 入选 2022 Gartner 云数据库“客户之声”,获评“卓越表现者”最高分

PingCAP

TiDB

实践 DevOps 时,可能面临的六大挑战

飞算JavaAI开发助手

修修补补一时爽,果断重构有担当——聊聊CRM分布式缓存优化

鲸品堂

分布式缓存

这不会又是一个Go的BUG吧?

捉虫大师

Java Go 死锁

强化学习在推荐算法的应用论文整理(一)_语言 & 开发_Alex-zhai_InfoQ精选文章