《HarmonyOS:领航者说》技术公开课来啦,大咖分享、实战解码,不容错过 了解详情
写点什么

在 FIFA 20 将技能相似球员进行分组(1):K- 均值聚类

  • 2020-09-21
  • 本文字数:2011 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(1):K-均值聚类

引言

足球(欧洲足球)从小就是我最喜欢的运动之一。过去无论我去哪里,都会随身带着足球,这样我就能最大限度地利用踢足球的机会。


我也喜欢玩电脑游戏《FIFA 足球世界》,我觉得,用机器学习来分析 FIFA 中的球员是一件很酷的事情。


在本教程中,我将使用 K-均值(K-Means)聚类算法在 FIFA 20 将技能相似的球员进行分组。

了解聚类

聚类(Clustering)是无监督学习技术的一种(另一种是主成分分析)。


我们可以将观测值聚类(或分组)到相同的子组中,使子组内的观测值彼此相当相似,而不同子组中的观测值彼此相当不同。



聚类示例。


上面的散点图显示了数据集中有三个不同的组。

了解 K-均值聚类算法

K-均值聚类算法是聚类算法中的一种。


基本算法如下:


  • 指定 K-聚类并初始化随机质心。

  • 进行迭代,直到聚类分配停止更改。该方法将每个观测值精确地分配到 K 个聚类中的一个。

  • 对于每个 K 聚类,计算聚类平均值。

  • 继续查看观测值列表,并将观测值分配给平均值最接近的聚类。


其目的是形成聚类,使同一聚类内的观测值尽可能相似。


K-均值聚类算法使用平方欧几里得距离计算相似度。

数据集

我们将使用 Kaggle 的 FIFA 20 数据集

特征工程

我们只会选择数值和每个球员的名字。


df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle', 'goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]
复制代码


我提取的是总成绩高于 86 分的球员,因为我们不想使用 18000 多名球员进行分组。


df = df[df.overall > 86] # extracting players with overall above 86
复制代码


将空值替换为平均值。


df = df.fillna(df.mean())
复制代码


归一化(标准化/缩放)数据。


  • 我们希望将数据进行归一化,因为变量是在不同尺度上测量的。


from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码


使用主成分分析将图中的 60 个维度减少到 2 个。


from sklearn.decomposition import PCApca = PCA(n_components = 2) # 2D PCA for the plotreduced = pd.DataFrame(pca.fit_transform(X_norm))
复制代码

执行 K-均值聚类

我们将指定有 5 个聚类。


from sklearn.cluster import KMeans# specify the number of clusterskmeans = KMeans(n_clusters=5)# fit the input datakmeans = kmeans.fit(reduced)# get the cluster labelslabels = kmeans.predict(reduced)# centroid valuescentroid = kmeans.cluster_centers_# cluster valuesclusters = kmeans.labels_.tolist()
复制代码


通过添加球员的名字和他们的聚类来创建一个新的数据帧。


reduced['cluster'] = clustersreduced['name'] = namesreduced.columns = ['x', 'y', 'cluster', 'name']reduced.head()
复制代码

K-均值聚类图的可视化

import matplotlib.pyplot as pltimport seaborn as sns%matplotlib inlinesns.set(style="white")ax = sns.lmplot(x="x", y="y", hue='cluster', data = reduced, legend=False,fit_reg=False, size = 15, scatter_kws={"s": 250})texts = []for x, y, s in zip(reduced.x, reduced.y, reduced.name):texts.append(plt.text(x, y, s))ax.set(ylim=(-2, 2))plt.tick_params(labelsize=15)plt.xlabel("PC 1", fontsize = 20)plt.ylabel("PC 2", fontsize = 20)plt.show()
复制代码



K-均值聚类


看看基于球员位置的聚类是如何形成的,是不是很酷!


我希望本教程对你有所启发,敬请关注下一篇教程!


作者介绍


Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-1-k-means-clustering-c4a845db78bc


2020-09-21 10:101446

评论

发布
暂无评论
发现更多内容

架构师训练营第六章总结

吴吴

架构师训练营——第6周学习总结

jiangnanage

“区块链+政务” 将如何前行,接下政务信息化改革接力棒还欠火候

CECBC

字节跳动基于Flink的MQ-Hive实时数据集成

Apache Flink

flink

week06 作业

雪涛公子

极客大学架构师训练营0期第六周作业2

Nan Jiang

分布式总结

周冬辉

nosql zookeeper 分布式 CAP原理

week6 学习总结

任小龙

极客大学架构师训练营

week06作业

Safufu

未来已至,持续学习让我们更好的生存

董一凡

学习 生活

第六周学习总结

CP

java 后端博客系统文章系统——No6

猿灯塔

第六章学习总结

李白

高并发下数据库方案演进

superman

分库分表 极客大学架构师训练营

架构师课程第六周总结

dongge

用AI的线团,解开金融行业的米拉诺斯迷宫

脑极体

架构师第六周培训学习总结

小蚂蚁

架构师训练营 第六周 作业

极客

架构是训练营

Android | 《看完不忘系列》之Glide

哈利迪

android

给技术同学的建议:人人都该懂的埋点知识

易观大数据

第六周总结

晨光

信创舆情一线--英国禁用华为5G设备

统小信uos

5G

架构师培训第六周习题

小蚂蚁

Doris服务节点临时失效处理过程时序图

任小龙

极客大学架构师训练营

架构师训练营——第6周作业

jiangnanage

架构师训练营第六周作业

Bruce Xiong

极客大学架构师训练营-cap原理

Geek_zhangjian

CAP原理之个人见解

潜默闻雨

架构师训练营第六章作业

吴吴

第六周·命题作业·CAP原理

刘璐

官方剧透:1.11 发版前我们偷看了 Flink 中文社区发起人的聊天记录

Apache Flink

flink

在 FIFA 20 将技能相似球员进行分组(1):K-均值聚类_AI&大模型_Jaemin Lee_InfoQ精选文章