50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

基于 Logistict 回归的评分卡模型

  • 2020-03-22
  • 本文字数:1970 字

    阅读完需:约 6 分钟

基于Logistict回归的评分卡模型

1 评分卡分类


A 卡(Applicationscore card)新客户申请审批


  • 更准确地评估申请人的未来表现(违约率),降低坏帐率;

  • 加快(自动化)审批流程, 降低营运成本;

  • 增加审批决策的客观性和一致性,提高客户满意度;


B 卡(Behaviorscore card)现有客户管理


  • 更好的客户管理策略, 提高赢利;

  • 减少好客户的流失;

  • 对可能拖欠的客户,提早预警;


C 卡(Collectionscore card)早期催收


  • 优化催收策略,提高欠帐的回收率;

  • 减少不必要的催收行为,降低营运成本。

2 模型开发全流程

用一张图为大家展示,量化团队分析师开发评分卡模型的全流程,以及具体实现方式:



Step1:变量初选


通过等频分箱或最优分箱离散原始数据,计算 IV 值,剔除预测能力差的指标。


  • 信息值(information value,简称”IV”)是常用的进行自变量筛选的指标,计算简单,并且有经验的判断法则,IV 值的计算公式为:





Step2:变量剔除


通过变量聚类或者计算相关系数的方法剔除变量,这一步主要目的是解决多重共线性问题。多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。


Step3:数据离散化


数据离散化的目的是降低异常值的影响,同时增加模型的可解释性,通过 BESTKs、卡方合并、决策树等有监督算法将连续变量离散化几个区间,然后进行 WOE 转换。


  • 证据权重(Weight of Evidence,简称“WOE”)



WOE 是对原始自变量的一种编码形式,要对一个变量进行 WOE 编码,需要首先把这个变量进行分组处理(也叫离散化、分箱)。



Step4:初步建模


将原始指标用 WOE 进行替换后,用 logistic 回归估计参数,并剔除参数估计为负的变量。


下面让我们来了解一下信用评分卡模型所依赖的 Logistic 回归算法。何为“回归”呢?当有一些数据点,用一条直线对这些点进行拟合(该直线称为最佳拟合直线),这个拟合过程就叫回归。那么,利用 Logistic 回归进行分类的主要思想就是根据现有数据对分类边界线建立回归公式,以此进行分类。“回归”源于最佳拟合,即使用最优化算法,找到最佳拟合参数集。


  • Logistic 回归的实现:对于输入特征,每个特征乘以一个回归系数,将所有结果值相加带入 Sigmoid 函数中,从而得到一个 0~1 之间的数值,根据实际情况设定相关阈值,从而达到预测的目的。

  • 最优化算法:如何找到最优回归系数,是 Logistic 回归的关键问题。



即:找到上式的w\dot机器学习中常用的最优化算法有:梯度下降法(GradientDescent)、牛顿法和拟牛顿法(Newton’s method & Quasi-NewtonMethods)、共轭梯度法(Conjugate Gradient)等等,接下来简单介绍梯度下降法。


  • 梯度下降法(Gradient Descent):梯度下降即沿着某函数的梯度方向,找到该函数的最小值,如果梯度记为▽,则函数 f(x,y)的梯度为:



则梯度下降算法的迭代公式为:,其中,为步长。


Step5:人工干预


根据指标的业务意义、上下限、人数占比、违约比例调整分箱规则,即业务干预。


Step6:WOE 更新


人工干预后,得到新的分箱,根据新分箱,更新 WOE。


Step7:模型更新


更新完 WOE 之后,利用新的 WOE 值估计回归参数。


Step8:分数转化


根据 Logistic 回归估计的参数、分箱的 WOE 来确定每个区间的得分。


Step9:模型效果评估


我们利用 AUC、KS 等指标评估模型的预测能力。


  • AUC(Area Under Curve)


AUC 实际上就是 ROC 曲线下的面积,ROC 曲线反映了分类器的分类能力,结合考虑了分类器输出概率的准确性,AUC 量化了 ROC 曲线的分类能力,越大分类效果越好,输出概率越合理。


  • KS (Kolmogorov-Smirnov)


K-S 统计量被应用于信用评级模型主要是为了验证模型对违约对象的区分能力,是表现模型区分能力的验证指标;通常,如果模型的 K-S 统计量越大,表明模型区分正常客户和违约客户的能力越强。


Step10:模型监控


  • PSI (population stability index)


系统稳定性指数,主要考察了模型预测结果的稳定性,通过对建模样本和监控样本中客户的评分或评级分布的比较来判断模型预测结果的稳定性。系统稳定性指数越小,越稳定,表明监控样本的分数的分布情况和建模样本中的情况越相似,可以预期模型在监控样本中的性能表现和建模样本中的性能表现会很接近。


Step11:评分


下面的小示例,简单为大家展示评分卡及其计分模式:



如果该模型的基础分是 50 分,比如有个客户,大专毕业,男性,拥有自有住房,工作 10 年以上,那么他的分数就应该是:Score=50+14+9+24+12=109。

3 总结

本文介绍了基于 Logistic 回归的评分卡模型的实现流程,介绍了 Logistic 算法、IV 值和 WOE,以及评价模型的指标 AUC、ks 值、PSI 等。在实际应用中,评分卡模型的作用日渐突出。量化团队根据业务需要开发各种不同评分卡模型,并尝试不同算法建模,试图更加科学、准确地构建模型,降低误判率,增加审批的客观性,提高客户的满意度。


2020-03-22 21:042595

评论

发布
暂无评论
发现更多内容

竞价实例一小时亏损21万

jinjin

阿里云 抢占式实例 竞价实例 spot

2021年金三银四全新版互联网大厂Java面试题,分类65份PDF,累计2340页

Java 架构 面试

熟练使用SSH客户端常用工具SecureCRT

xiezhr

Linux SSH securecrt SSH工具

为什么在做微服务设计的时候需要DDD?

xcbeyond

微服务 DDD 3月日更

币BI掌柜量化交易策略APP开发(系统案例)

代码审查:从 ArrayList 说线程安全

mzlogin

Java 代码审查

寻找被遗忘的勇气(十三)

Changing Lin

3月日更

5年Java开发,面试4大厂(阿里、拼多多、字节、美团)后,我总结出大厂高频面试真题及解析

Java架构之路

Java 程序员 架构 面试 编程语言

使用Hadoop相关框架进行网站流量日志分析

五分钟学大数据

大数据 hadoop 28天写作 3月日更

浅谈数仓、数仓模型分层

白贺BaiHe

大数据 解决方案 通用设计模型 数仓

net.coobird.thumbnailator.tasks.UnsupportedFormatException: No suitable ImageReader found for source data.

wjchenge

沟通视窗:改善人际沟通

石云升

28天写作 职场经验 管理经验 3月日更 沟通模型

量化合约跟单交易系统开发软件

#区块链#

如何在子线程中使用Toast显示消息

Geek_416be1

如何实现可靠UDP传输

赖猫

计算机网络 udp TCP/IP

2021字节面经最新整理: 面试真经/思维导图/学习笔记!火遍全网

比伯

Java 编程 架构 面试 计算机

Day01:VBA和Python入门

披头

办公自动化 IT蜗壳教学 数据科学探究

阿里Java岗个人面经分享(技术三面+技术HR面):Java基础+Spring+JVM+并发编程+算法+缓存

Java架构之路

Java 程序员 架构 面试 编程语言

美团工作7年,精华全在这份学习笔记里了,已成功帮助多位朋友拿到5个大厂Offer

Java架构之路

Java 程序员 架构 面试 编程语言

滚雪球学 Python 之怎么玩转时间和日期库

梦想橡皮擦

28天写作 3月日更

说说RPC架构

Kylin

读书笔记 3月日更 日常积累 RPC架构

去年,蚂蚁一面的一道笔试题,中等难度

yes

面试

BI币掌柜量化自动交易机器人开发

#区块链#

谈产品和创业方向

Ryan Zheng

创业 产品

资深大牛带你了解源码!最详细的docker中安装并配置redis,实战解析

欢喜学安卓

android 程序员 面试 移动开发

资深大牛带你了解源码!面试题解析已整理成文档,已拿offer

欢喜学安卓

android 程序员 面试 移动开发

太简单了!看完这篇还能不会SpringCloud+Nginx高并发?

Java架构追梦

Java nginx 架构 面试 SpringCloud

种春草肥禾,织数字天下

脑极体

基于SparkMLlib智能课堂教学评价系统-相关研究及文献分析(二)

大数据技术指南

大数据 智能时代 28天写作 3月日更

马特量化炒币机器人APP系统开发详情介绍

#区块链#

对话微众和红枣:预言机是区块链提供可信数据的基础设施

CECBC

区块链

基于Logistict回归的评分卡模型_文化 & 方法_京东数字科技产业AI中心_InfoQ精选文章