写点什么

关系型数据库全表扫描分片详解

  • 2020-02-14
  • 本文字数:3722 字

    阅读完需:约 12 分钟

关系型数据库全表扫描分片详解

导读:数据总线(DBus)专注于数据的实时采集与实时分发,可以对 IT 系统在业务流程中产生的数据进行汇聚,经过转换处理后成为统一 JSON 的数据格式(UMS),提供给不同数据使用方订阅和消费,充当数仓平台、大数据分析平台、实时报表和实时营销等业务的数据源。在上一篇关于 DBus 的文章中,我们主要介绍了在 DBus 的设计中,表结构变更及其带来的各种问题是如何处理的。在本文中,我们则是从数据分片的角度出发,具体介绍 DBus 在数据采集的过程中,运用了什么样的分片策略和分片原理,以及过程中遇到的问题及解决方案。


一、分片策略


对于传统的关系型数据库,DBus 通过提供全量数据拉取和增量数据采集两种途径满足用户数据采集需求。DBus 数据抽取流程如下图所示(以 mysql 为例):


1531116959574098809.png


全量数据采集的主要原理是:根据主键、唯一索引、索引等信息,确定分片列。之所以分片列要根据主键、唯一索引、索引等选择,是因为这些列的数据在库里建立了良好索引,能提升数据扫描的效率。


根据选定的分片列,对数据进行拆片,确定每片数据的上下界,然后根据每片上下界,以 6~8 左右的并发度,进行数据拉取。(6~8 左右的并发度是经大量测试获得的经验值。实验显示,6~8 左右的并发度既不会对源库形成过高压力,又能最大限度提升全量数据拉取的效率。)


DBus 分片策略示意图:


1531116995382061163.png


DBus 拉取策略示意图:


1531117013643009691.png


那么,DBus 支持什么类型的列作为分片列?不同类型的分片列,分片策略如何呢?


分片策略这块,DBus 借鉴了 Sqoop 的分片设计,支持以下类型的列作为分片列:


BigDecimal/numeric


Boolean


Date/time/timestamp


Float/double


Integer/smallint/long


Char/Varchar/Text/NText


拆片原理大体一致,都是根据分片列的最大最小值,以及设定的每片大小,进行每一分片上下界的计算和确定。但具体实现细节差异很大。尤其是 Text/NText 类型,借鉴、应用的过程中发现一些问题,我们进行了一些调整和优化。


本文主要和大家分享一下遇到的坑和我们的解决办法。




二、分片原理


  1. 数字类型分片列


让我们先以最简单、明了的数字类型分片列为例介绍分片原理。


如前所述,我们会按照主键->唯一索引->索引的优先级确定分片列。如果表有主键,我们以主键列为分片列;如果没有主键,有唯一索引,我们以唯一索引列为分片列……以此类推。如果找到的键或索引是联合主键或联合索引,我取其中的第一列作为分片列。如果没有找到任何合适的列作为分片列,则不分片,所有数据作一片进行拉取(无法享受并发拉取带来的效率提升)。


首先要根据一定的规则选取某一列作为分片列,然后根据分片列的最大最小值,以及设定的每片大小,进行每一分片上下界的计算和确定:


• 1 获取切分字段的 MIN()和 MAX()


• “SELECT MIN(” + qualifiedName + "),


• MAX(" + qualifiedName + “) FROM (” + query + ") AS " + alias


• 2 根据 MIN 和 MAX 不同的类型采用不同的切分方式


• 支持有 Date, Text, Float, Integer,Boolean, NText, BigDecimal 等等。


• 以数字为例子:


• 步长=(最大值-最小值)/mapper 个数


• 生成的区间为


• [最小值,最小值+步长)


• [最小值+步长,最小值+2*步长)


• …


• [最大值-步长,最大值]


• 生成的 condition 类似:


• splitcol >= min and splitcol < min+splitsize


实现代码片段如下:


1531117106771036067.jpeg


  1. 字符串类型分片列


对于分片列类型为数字类型的情况,很好理解。


如果分片列类型为 char/varchar 等字符串类型呢?每一片的上下界该如何计算?


原理还是一样的:查出该列的最小、最大值,根据每片大小,计算每片分界点,生成每一片的上下界。


技术细节上不一样的地方是:每片分界点/上下界的计算。


分片列类型为 int,min 为 2 ,max 为 10, shard size 为 3,分片很好理解:

col 1

Split[2,5)


Split[5,8)


Split[8,10]


如果分片列类型为 varchar(128), min 为 abc,max 为 xyz,怎么计算拆片点呢?


Sqoop 的分片机制是通过将“字符串”映射为“数字”,根据数字计算出分片上下界,然后将以数字表达的分片上下界映射回字符串,以此字符串作为分片的上/下界。如下所示:


  1. 字符串映射为数值 (a/65536 + b/65536^2 + c/65536^3)

  2. 数值 split 计算分割点,生成插值

  3. 插值映射回会字符串 ****


1531117150320074446.png


然而,在实际应用中,上述分片机制碰到各种问题,下面将我们碰到和解决这一系列问题的经验分享如下。


三、分片经验


  1. 首先,根据上面的分片进行数据的拉取,有卡死情况。


• 现象


• 无错误输出,但全量抽取进程输出一部分分片后卡死,无任何输出


• 经过检查,发现 30 秒后, storm worker 被莫名其妙重启了?


• 分析


• nimbus.task.timeout.secs 的缺省时间为 30 秒,nimbus 发现 worker 无响应,就重启动 worker


• 为什么 worker 无响应?


• 字符串的插值是任意可能的,例如:


• splitcol >= ‘abc’ and splitcol < ‘fxxx’xx’


• 解决办法


• 使用 binding 变量方式,而不是拼接字符串方式


• Select * from T splitcol >= ?and splitcol < ?


  1. 更新后碰到新问题,报 Illegal mix of collations 异常。


• 现象


• 显示 exception:[ERROR] Illegal mix of collations (utf8_general_ci,IMPLICIT) and (utf8mb4_general_ci,COERCIBLE) for operation ‘<’


• java.sql.SQLException: Illegal mix of collations (utf8_general_ci,IMPLICIT) and (utf8mb4_general_ci,COERCIBLE) for operation '<‘


• 分析


• 什么是 Utf8 和 utf8mb4?


• utf8 是 Mysql 中的一种字符集,只支持最长三个字节的 UTF-8 字符


• 三个字节的全部编码空间: 000000~ 00FFFF


• MySQL 在 5.5.3 之后增加了这个 utf8mb4 的编码,mb4 就是 most bytes 4 的意思,专门用来兼容四字节的 unicode


• 四个字节新增的编码空间:010000~10FFFF


• 似乎生成了 utf8mb4 的码的字符串, splitcol 和生成的插值字符串,属于不同的字符集,无法进行比较,Splitcol 属于 utf8 字符集,而插值属于 utf8mb4 字符集


• 检查发现:


• character_set_server:utf8mb4


• character_set_database/table : utf8


• Connection url: utf8 = utf8mb4


• Unicode


• 代码空间:总共有 1,114,112 个代码点,编号从 0x0 到 0x10FFFF


• 代码平面:Unicode 分成了 17 个代码平面(Code Plane),编号为 #0 到 #16。每个代码平面 65,536 个代码点


• UTF16


• 从 U+0000 至 U+FFFF 基本多语言平面(BMP)


• 包含了最常用的字符


• 实际字符需要除去代理区,也就是从 U+0000 至 U+D7FF 和 U+E000 至 U+FFFF。


• UTF8


• 从 U+D800 到 U+DFFF 的码位(代理区)


• Unicode 标准规定 U+D800…U+DFFF 的值不对应于任何字符


1531117209872085677.png


• 从 U+10000 到 U+10FFFF 的补充平面(Supplementary Planes)


• 在 UTF-16 中被编码为一对 16 比特长的码元(即 32bit,4Bytes),称作 code units called a 代理对(surrogate pair)


• 第一个 WORD 的高 6 位是 110110,第二个 WORD 的高 6 位是 110111。可见,


• 第一个 WORD 的取值范围(二进制)是 11011000 00000000 到 11011011 11111111,即 0xD800-0xDBFF。


• 第二个 WORD 的取值范围(二进制)是 11011100 00000000 到 11011111 11111111,即 0xDC00-0xDFFF。


• Emoji 字符的例子:



1531120049231039612.png


• 对应 Unicode 是\u1F601


• 对应的 utf16 码是 2 个 word,即:0xd83d, 0xde01,对应 java string length 为 2.


根据上述字符集只是,我们找到了问题症结所在:


• bigDecimalToString()生成的插值:


• 无法保证是否会落入 U+D800 到 U+DFFF 的代理区


• 无法保证连续两个 word 满足代理对的标准,可能会被认定为乱码


• 代理区间占整个 U+FFFF 区间很小


• 解决方案


• 回避生成在代理区的字符,用合法的 BMP 区字符替代


• if (0xD800 <= codePoint && codePoint <= 0xDFFF) {


• codePoint = 0xD3FF;


• }


• 可能的缺点是:分片不那么均匀,但由于代理区占整个 U+FFFF 区间很小,影响不大


1531117228540011776.png

↓↓↓

1531117298799061219.png



    解决字符集乱码问题后,能正常拉取数据,但总数不对。


    • 现象


    • 没有错误,全量抽取完成,但数量不对,整个表只有 300 万,实际抽取了 500 万?


    • 分析


    • 程序并没有错,存在重复数据


    • utf8_genera_ci 不区分大小写,ci 为 case insensitive 的缩写,即大小写不敏感


    • utf8_bin 将字符串中的每一个字符用二进制数据存储,区分大小写


    • 例如:SELECT * FROM table WHERE txt = ‘a’


    • 那么在 utf8_bin 中你就找不到 txt = ‘A’, 而 utf8_general_ci 则可以.


    • 解决方案


    • 应该使用 utf8_bin 进行查询


    类似: SELECT * FROM tableName WHERE binary columnName = ‘a’;


    至此,对 char、varchar 类型字符串分片列的分片,也有了很好的支持。


    本文转载自宜信技术学院网站。


    原文链接:http://college.creditease.cn/detail/157


    2020-02-14 10:28958

    评论

    发布
    暂无评论
    发现更多内容

    涵盖多场景区块链与政务结合 应用前景广阔

    CECBC

    区块链 互联网 数字政务

    化妆品行业与区块链的融合可减少甚至消除假冒伪劣

    CECBC

    区块链 化妆品

    最强云硬盘来了,让AI模型迭代从1周缩短到1天

    华为云开发者联盟

    SSD 云存储 All-Flash 云硬盘 擎天架构

    Luajit字节码解析之KNUM

    whosemario

    lua

    区块链技术服务于税收治理的深圳实践

    CECBC

    区块链 电子发票 税收

    甲方日常 3

    句子

    工作 随笔杂谈 日常

    Mysql探索之索引详解

    不才陈某

    MySQL

    【FCC前端教程】44关学习CSS与CSS3基础「二」

    三钻

    CSS 大前端 FCC

    Flink-状态后端作用-11

    小知识点

    scala 大数据 flink

    企业网络安全漏洞多,这些等保服务来填坑

    华为云开发者联盟

    Web 安全 防火墙 等保 DDoS

    安全系列之——数据传输的完整性、私密性、源认证、不可否认性

    诸葛小猿

    加密解密 rsa 签名验签 数字证书 CA

    架构师训练营第 11周作业和感想

    tuuezzy

    极客大学架构师训练营

    菜市场和房屋中介

    escray

    学习 面试

    一篇文章搞懂前端学习方法与构建知识体系

    三钻

    学习 大前端

    LeetCode题解:155. 最小栈,单个栈+对象存储,JavaScript,详细注释

    Lee Chen

    大前端 LeetCode

    oeasy教您玩转linux010107那啥在哪 whereis

    o

    并发杂谈系列0 序与目录

    八苦-瞿昙

    随笔杂谈

    初识Druid——实时OLAP系统

    justskinny

    大数据 Apache Druid

    微前端在民生 APaaS/PSET 平台的探索与实践

    亻尔可真木奉

    大前端 探索与实践 案例分享

    消息队列之推还是拉,RocketMQ 和 Kafka 是如何做的?

    yes

    kafka RocketMQ

    建设开发者生态:6项华为API管理原则落地

    华为云开发者联盟

    开发者 API 华为云 API Explorer平台 应用技术

    抗疫复产,CDN助企业破局发展

    华为云开发者联盟

    CDN 网络 华为云 CDN加速 企业应用

    穿什么衣服去面试?

    escray

    学习 面试

    架构师训练营0期11周

    WW

    面试官想知道都在这里

    escray

    学习 面试

    【Elasticsearch 技术分享】—— 十张图带大家看懂 ES 原理 !明白为什么说:ES 是准实时的!

    程序员小航

    Java elasticsearch 搜索 ES Lucene Elastic Search

    揭开数组的真面目

    Java旅途

    Java 数据结构 数组

    区块链技术发展面临七大关键挑战以及未来的五大展望

    CECBC

    区块链 新基建 数字型资产

    区块链 新基建定位下的新使命 2020新区势

    CECBC

    区块链 新基建

    如何开成功一个回顾会

    研发管理Jojo

    敏捷教练 回顾会 引导者

    年薪80万难觅技术人才 杭州区块链人才需求旺盛

    CECBC

    区块链 新基建 大学专业

    关系型数据库全表扫描分片详解_大数据_尹宏春_InfoQ精选文章