写点什么

通用视觉的 GPT 时刻来临?智源推出通用分割模型 SegGPT,可「分割一切 」

  • 2023-04-09
    北京
  • 本文字数:1663 字

    阅读完需:约 5 分钟

通用视觉的GPT时刻来临?智源推出通用分割模型SegGPT,可「分割一切 」

ChatGPT 引发了语言大模型狂潮,AI 另一个重大领域 — 视觉的 GPT 时刻何时到来?


4 月 8 日,智源研究院视觉团队推出通用分割模型 SegGPT(Segment Everything In Context)——首个利用视觉提示(prompt)完成任意分割任务的通用视觉模型。

 

SegGPT 与 Meta AI 图像分割基础模型 SAM 同时发布,两者的差异在于:


• SegGPT“一通百通”:给出一个或几个示例图像和意图掩码,模型就能 get 用户意图,“有样学样”地完成类似分割任务。用户在画面上标注识别一类物体,即可批量化识别分割同类物体,无论是在当前画面还是其他画面或视频环境中。


• SAM“一触即通”:通过一个点或边界框,在待预测图片上给出交互提示,识别分割画面上的指定物体。

无论是“一触即通”还是“一通百通”,都意味着视觉模型已经“理解”了图像结构。SAM 精细标注能力与 SegGPT 的通用分割标注能力相结合,能把任意图像从像素阵列解析为视觉结构单元,像生物视觉那样理解任意场景,通用视觉 GPT 曙光乍现。

 


论文地址:https://arxiv.org/abs/2304.03284

代码地址:https://github.com/baaivision/Painter

Demo:https://huggingface.co/spaces/BAAI/SegGPT

 

SegGPT 是智源通用视觉模型 Painter 的衍生模型,针对分割一切物体的目标做出优化。SegGPT 训练完成后无需微调,只需提供示例即可自动推理并完成对应分割任务,包括图像和视频中的实例、类别、零部件、轮廓、文本、人脸等等。

 

该模型具有以下优势能力:


1. 通用能力:SegGPT 具有上下文推理能力,模型能够根据提供的分割示例(prompt),对预测进行自适应的调整,实现对“everything”的分割,包括实例、类别、零部件、轮廓、文本、人脸、医学图像等。

2. 灵活推理能力:支持任意数量的 prompt;支持针对特定场景的 tuned prompt;可以用不同颜色的 mask 表示不同目标,实现并行分割推理。

3. 自动视频分割和追踪能力:以第一帧图像和对应的物体掩码作为上下文示例,SegGPT 能够自动对后续视频帧进行分割,并且可以用掩码的颜色作为物体的 ID,实现自动追踪。

 

案例展示

 

1. 标注出一个画面中的彩虹(上图),可批量化分割其他画面中的彩虹(下图)



2. 作者在广泛的任务上对 SegGPT 进行了评估,包括少样本语义分割、视频对象分割、语义分割和全景分割。下图中具体展示了 SegGPT 在实例、类别、零部件、轮廓、文本和任意形状物体上的分割结果。




3. 用画笔大致圈出行星环带(上图),在预测图中准确输出目标图像中的行星环带(下图)。

 



4. SegGPT 能够根据用户提供的宇航员头盔掩码这一上下文(上图),在新的图片中预测出对应的宇航员头盔区域(下图)。




训练方法

 

SegGPT 将不同的分割任务统一到一个通用的上下文学习框架中,通过将各类分割数据转换为相同格式的图像来统一各式各样的数据形式。


具体来说,SegGPT 的训练被定义为一个上下文着色问题,对于每个数据样本都有随机的颜色映射。目标是根据上下文完成各种任务,而不是依赖于特定的颜色。训练后,SegGPT 可以通过上下文推理在图像或视频中执行任意分割任务,例如实例、类别、零部件、轮廓、文本等。



Test-time techniques

 

如何通过 test-time techniques 解锁各种能力是通用模型的一大亮点。SegGPT 论文中提出了多个技术来解锁和增强各类分割能力,比如下图所示的不同的 context ensemble 方法。所提出的 Feature Ensemble 方法可以支持任意数量的 prompt 示例,实现丰俭由人的推理效果。

 


此外,SegGPT 还支持对特定场景优化专用 prompt 提示。对于针对性的使用场景,SegGPT 可以通过 prompt tuning 得到对应 prompt,无需更新模型参数来适用于特定场景。比如,针对某一数据集自动构建一个对应的 prompt,或者针对一个房间来构建专用 prompt。如下图所示:

 


结果展示

 

模型只需少数 prompt 示例,在 COCO 和 PASCAL 数据集上取得最优性能。SegGPT 显示出强大的零样本场景迁移能力,比如在少样本语义分割测试集 FSS-1000 上,在无需训练的情况下取得 state-of-the-art 性能。




无需视频训练数据,SegGPT 可直接进行视频物体分割,并取得和针对视频物体分割专门优化的模型相当的性能。



以下是基于 tuned prompt 在语义分割和实例分割任务上的效果展示:



2023-04-09 12:567202
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 569.2 次阅读, 收获喜欢 1979 次。

关注

评论 1 条评论

发布
用户头像
謝謝分享。
2023-04-10 13:43 · 中国香港
回复
没有更多了
发现更多内容

缓存与数据库双写一致性几种策略分析

京东科技开发者

数据库 缓存 高并发 数据一致性 企业号 4 月 PK 榜

Flomesh 软负载 FLB GA 版本发布

Flomesh

负载均衡 云原生 Pipy

多家大厂CTO鼎力推荐的微服务架构设计模式真的硬核

小小怪下士

Java 程序员 微服务 后端

Flink CDC 在易车的应用实践

Apache Flink

大数据 flink 实时计算

代码质量难评估?一文带你用 SonarQube 分析代码质量!

Java你猿哥

架构师 代码 SSM框架 sonar

阿里P7了!全靠死磕这份阿里全彩版"并发编程笔记",大厂必备!

Java你猿哥

Java 并发编程 架构师 java面试 Java工程师

中船互联与嘉为科技共同打造“IT运维管理”融合解决方案

嘉为蓝鲸

自动化运维 IT 运维 中船集团

一篇神文就把java多线程,锁,JMM,JUC和高并发设计模式讲明白了

Java 多线程 高并发

漫谈前端自动化测试演进之路及测试工具分析

京东科技开发者

前端 自动化测试 前端测试 企业号 4 月 PK 榜

改写同事代码——血压操作集锦第一弹

Java你猿哥

Java IDEA java编程 SSM框架 表单设计

Spring @Import注解的使用和源码分析

Java你猿哥

Java spring import SSM框架

大型SRE组织设计与建设落地,且看腾讯蓝鲸如何做?

嘉为蓝鲸

腾讯 运维自动化 蓝鲸

揭秘云原生时代企业可观测体系落地实践

嘉为蓝鲸

云原生应用 云原生(Cloud Native) 可观测宇宙

【FAQ】关于华为推送服务因营销消息频次管控导致服务通讯类消息下发失败的解决方案

HarmonyOS SDK

HMS Core

软件架构生态化-多角色交付的探索实践

京东科技开发者

架构 架构师 交付能力 企业号 4 月 PK 榜

《社区人员管理》实战案例设计&个人案例分享

京东科技开发者

架构 测试 编码 在线设计平台 企业号 4 月 PK 榜

leetcode-2335. 装满杯子需要的最短总时长

肥晨

三周年征文

极光笔记 | 让运营“从心”出发,打造身临其境的客户体验!

极光GPTBots-极光推送

运营 消息推送 极光推送

MySQL到ClickHouse数据同步产品对比推荐

NineData

MySQL Clickhouse dba bifrost NineData

全网已经疯传90多万次的java修炼指南!已帮我拿下11个大厂offer

SAP Emarsys 的前后台技术栈

汪子熙

SaaS Cloud SAP 思爱普 三周年连更

“分割一切”大模型SAM、超轻量PP-MobileSeg、工业质检工具、全景分割方案,PaddleSeg全新版本等你来体验!

飞桨PaddlePaddle

计算机视觉 飞桨 图像分割

ChatGPT,音乐,与数据库

沃趣科技

数据库 云原生 音乐 ChatGPT

HummerRisk V1.0 :架构升级说明

HummerCloud

开源 云安全 云原生安全

CentOS7 离线安装 Zabbix5.0

A-刘晨阳

Linux zabbix 三周年连更 离线安装

基于 Flink CDC 的现代数据栈实践

Apache Flink

大数据 flink 实时计算

不懂就问,Milvus 新上线的资源组功能到底怎么样?

Zilliz

非结构化数据 Milvus Zilliz

基于 Flink CDC 的现代数据栈实践

Apache Flink

大数据 flink 实时计算

治理告警风暴,告警降噪的一些典型手段

巴辉特

告警风暴 告警降噪

Spring Boot 实现接口幂等性的 4 种方案

Java Spring Boot

通用视觉的GPT时刻来临?智源推出通用分割模型SegGPT,可「分割一切 」_AI&大模型_刘燕_InfoQ精选文章