AI 时代下组织如何快速变革?如何提升全员 AI 技能?戳> 了解详情
写点什么

Java 中的 String.hashCode() 方法可能有问题?

  • 2018-08-14
  • 本文字数:3179 字

    阅读完需:约 10 分钟

过去几天,我一直在浏览 Reddit 上的一篇文章。这篇文章看得我要抓狂了。文章指出,Java 中的 String.hashCode() 方法(将任意长度的字符串对象映射成 32 位 int 值)生成的哈希值存在冲突。文章作者似乎对这个问题感到很惊讶,并声称 String.hashCode() 的算法是有问题的。用作者自己的话说:

不管使用哪一种哈希策略,冲突都是不可避免的,但其中总有相对较好的哈希也有较差的哈希。你可以认为 String 中的哈希是比较差的那种。

作者的措辞带有相当强烈的意味,并且已经证明了很多奇怪的短字符串在生成哈希时会产生冲突。(文章中提供了很多示例,例如!~ 和"_)。众所周知,32 位字符串哈希函数确实会发生很多冲突,但从经验来看,在真实的场景中,String.hashCode() 能够很好地管理哈希冲突。

那么“差”的哈希是什么样子的呢?而“好”的哈希又是什么样子的?

一点理论

32 位哈希只能占用 2^32 = 4,294,967,296 个唯一值。因为字符串中可以包含任意数量的字符,所以可能的字符串显然要比这个数字多得多。因此,根据鸽子原则,必然会存在冲突。

但冲突的可能性有多大?

著名的生日问题表明,对于 365 个可能的“哈希值”,在哈希冲突可能性达到 50%之前,必须计算出 23 个唯一哈希值。如果有 2^32 个可能的哈希值,那么在达到 50%的哈希冲突可能性之前,必须计算出大约 77,164 个唯一哈希值。根据这个近似公式:

复制代码
from math import exp
def prob(x):
return 1.0 -exp(-0.5 * x * (x-1) / 2**32)
prob(77163) # 0.4999978150170551
prob(77164) # 0.500006797931095

那么对于给定数量的独立哈希,预计会发生多少次冲突?所运的是,维基百科为此提供了一个封闭式方程式:

复制代码
def count(d, n):
return n - d + d * ((d - 1) / d)**n

这种封闭式的解决方案可用于在实际的哈希函数中加入理论拟合。

一点实践

那么 String.hashCode() 符合标准吗?试着运行这段代码:

复制代码
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;
import java.nio.charset.StandardCharsets;
public class HashTest {
private static Map<Integer,Set> collisions(Collection values) {
Map<Integer,Set> result=new HashMap<>();
for(T value : values) {
Integer hc=Integer.valueOf(value.hashCode());
Set bucket=result.get(hc);
if(bucket == null)
result.put(hc, bucket = new TreeSet<>());
bucket.add(value);
}
return result;
}
public static void main(String[] args) throws IOException {
System.err.println("Loading lines from stdin...");
Set lines=new HashSet<>();
try (BufferedReader r=new BufferedReader(new InputStreamReader(System.in, StandardCharsets.UTF_8))) {
for(String line=r.readLine();line!=null;line=r.readLine())
lines.add(line);
}
// Warm up, if you please
System.err.print("Warming up");
for(int i=0;i<10;i++) {
System.err.print(".");
collisions(lines);
}
System.err.println();
System.err.println("Computing collisions...");
long start=System.nanoTime();
Map<Integer,Set> collisions=collisions(lines);
long finish=System.nanoTime();
long elapsed=finish-start;
int maxhc=0, maxsize=0;
for(Map.Entry<Integer,Set> e : collisions.entrySet()) {
Integer hc=e.getKey();
Set bucket=e.getValue();
if(bucket.size() > maxsize) {
maxhc = hc.intValue();
maxsize = bucket.size();
}
}
System.out.println("Elapsed time: "+elapsed+"ns");
System.out.println("Total unique lines: "+lines.size());
System.out.println("Time per hashcode: "+String.format("%.4f", 1.0*elapsed/lines.size())+"ns");
System.out.println("Total unique hashcodes: "+collisions.size());
System.out.println("Total collisions: "+(lines.size()-collisions.size()));
System.out.println("Collision rate: "+String.format("%.8f", 1.0*(lines.size()-collisions.size())/lines.size()));
if(maxsize != 0)
System.out.println("Max collisions: "+maxsize+" "+collisions.get(maxhc));
}
}

我们使用短字符串(words.txt,链接见文末)作为输入:

复制代码
$ cat words.txt | java HashTest
Loading lines from stdin...
Warming up..........
Computing collisions...
Elapsed time: 49117411ns
Total unique lines: 466544
Time per hashcode: 105.2793ns
Total unique hashcodes: 466188
Total collisions: 356
Collision rate: 0.00076306
Max collisions: 3 [Jr, KS, L4]

在这些英文短字符串中,总共有 466,544 个哈希,出现 356 次冲突。从理论上讲,“公平”的哈希函数应该只会产生 25.33 次冲突。因此,String.hashCode() 产生的冲突是公平哈希函数的 14.05 倍: 356.0 / 25.33 ≈ 14.05

不过,每 10,000 个哈希出现 8 次冲突的概率仍然是个不错的成绩。

那么长字符串值的结果怎样?使用莎士比亚全集中的句子(链接见文末)会产生以下输出:

复制代码
$ cat shakespeare.txt | java HashTest
Loading lines from stdin...
Warming up..........
Computing collisions...
Elapsed time: 24106163ns
Total unique lines: 111385
Time per hashcode: 216.4220ns
Total unique hashcodes: 111384
Total collisions: 1
Collision rate: 0.00000897
0.00076306
Max collisions: 2 [ There's half a dozen sweets., PISANIO. He hath been search'd among the dead and living,]

在这些较长的英语字符串中,总共有 111,385 个哈希,出现 1 次冲突。“公平”哈希函数将在这些数据上产生 1.44 次冲突,因此 String.hashCode() 优于公平哈希函数,冲突可能性是公平哈希函数的 69.4%: 1 / 1.44 ≈ 0.694

也就是说,每 100,000 个哈希产生不到 1 个冲突,这个成绩是极好的。

一点解释

显然,String.hashCode() 不具备唯一性,它也不可能具备唯一性。对于短字符串,它与理论平均值差得比较远,但其实做得还算不错。对于长字符串,它可以轻松打败平均理论值。

总得来看,它对于预期字符串而言是具备唯一性的,可以将字符串很好地分布在哈希表中。

最后,我还是认为 String.hashCode() 是具备唯一性的,至少它足够“好”。

延伸阅读

如果你对这个问题感兴趣,我强烈建议你看一看 Stack Overflow 上的答案( https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed#answer-145633 ),它深入探讨了哈希函数冲突的问题。

重要链接:

Reddit 文章: https://www.reddit.com/r/coding/comments/967hci/stringhashcode_is_not_even_a_little_unique/

相关测试: https://vanilla-java.github.io/2018/07/26/Stringhash-Code-is-not-even-a-little-unique.html

生日问题: https://en.wikipedia.org/wiki/Birthday_problem

words.txt: http://sigpwned.com/wp-content/uploads/2018/08/words.txt

莎士比亚长句: http://sigpwned.com/wp-content/uploads/2018/08/shakespeare.txt

查看英文原文: http://sigpwned.com/2018/08/10/string-hashcode-is-plenty-unique/

2018-08-14 06:068338
用户头像

发布了 731 篇内容, 共 458.8 次阅读, 收获喜欢 2004 次。

关注

评论

发布
暂无评论
发现更多内容

技术分享|GrowingIO分析云对ClickHouse的实践

Geek_2d6073

亚信安慧通过ISO20000认证,AntDB数据库团队服务能力再上新台阶

亚信AntDB数据库

数据库 AntDB AntDB数据库 企业号 7 月 PK 榜

【好文推荐】敏捷绩效考核如何做?

ShineScrum

【7.21-7.28】写作社区优秀技术博文一览

InfoQ写作社区官方

热门活动 优质创作周报

图解MySQL中SQL语句的执行过程

程序员小毕

Java MySQL 数据库 sql 程序员

电子科技大学入驻飞桨AI Studio高校专区,AI优质课程等你来学!

飞桨PaddlePaddle

人工智能 百度 paddle 飞桨 百度飞桨

瀚元科技:利用A-OPS 智能运维助力边缘服务器运维效率提升30%

openEuler

Linux 运维 操作系统 openEuler 边缘

UPS设备在物流机房中的应用浅析 | 京东物流技术团队

京东科技开发者

机房管理 企业号 7 月 PK 榜 UPS

HDC.Together2023 HarmonyOS学生公开课议程抢先看!

HarmonyOS开发者

HarmonyOS

区块链服务网络的顶层设计与应用实践

BSN研习社

Apache Doris 1.2.6 版本正式发布|版本通告

SelectDB

数据库 大数据 后端 Doris

【落下帷幕】2023 中国大学生计算机设计大赛大数据应用大类国赛评审

ModelWhale

云计算 数据分析 在线编程 数据科学竞赛 中国大学生计算机设计大赛

数据库优化器设计穿越探索之旅

阿里技术

数据库 架构

并发编程-CompletableFuture解析 | 京东物流技术团队

京东科技开发者

并发编程 CompletableFuture JDK1.8 企业号 7 月 PK 榜

河北幸福消费金融基于 Apache Doris 构建实时数仓,查询提速 400 倍!

SelectDB

数据库 大数据 数据分析 后端 Doris

浅析 TiSpark v3.x 新变化

TiDB 社区干货传送门

版本测评 新版本/特性解读 7.x 实践

技术优化:降本增效的常规实践

有态度的马甲

防范地质灾害,北斗用芯监测

江湖老铁

软件测试/测试开发丨Python 内置库 sys 学习笔记分享

测试人

Python 程序员 软件测试

软件测试/测试开发丨Python 内置库 OS 学习笔记分享

测试人

Python 软件测试 测试开发 os内置库

如何开发一对一视频源码

山东布谷网络科技

App 源代码

【实践篇】推荐算法PaaS化探索与实践 | 京东云技术团队

京东科技开发者

PaaS 推荐算法 PaaS平台化能力 企业号 7 月 PK 榜

如何基于 Apache Doris 构建新一代日志分析平台

SelectDB

数据库 大数据 数据分析 Doris

Java 后端有哪些不用学的技术?劝退。。。

java易二三

Java 编程 计算机 jsp

MegEngine Python 层模块串讲(中)

MegEngineBot

Python 深度学习 开源

LED显示屏分为几类,特点分别是什么?

Dylan

LED显示屏 户外LED显示屏 户内led显示屏

PoseiSwap 即将开启质押,利好刺激下 POSE通证短时涨超 30%

西柚子

Java 命令行参数解析方式探索(四):Spark & Flink

冰心的小屋

Java spark 命令行 command Parameter

Java中的String.hashCode()方法可能有问题?_Java_Andy_InfoQ精选文章