写点什么

关系数据库还是 NoSQL 数据库

  • 2011-01-22
  • 本文字数:3076 字

    阅读完需:约 10 分钟

上一篇简单的说明了为什么要使用NoSQL。接下来我们看下如何把NoSQL 引入到我们的项目中,我们到底要不要把NoSQL 引入到项目中。

在过去,我们只需要学习和使用一种数据库技术,就能做几乎所有的数据库应用开发。因为成熟稳定的关系数据库产品并不是很多,而供你选择的免费版本就更加少了,所以互联网领域基本上都选择了免费的MySQL 数据库。在高速发展的WEB2.0 时代,我们发现关系数据库在性能、扩展性、数据的快速备份和恢复、满足需求的易用性上并不总是能很好的满足我们的需要,我们越来越趋向于根据业务场景选择合适的数据库,以及进行多种数据库的融合运用。几年前的一篇文章《 One Size Fits All - An Idea Whose Time Has Come and Gone 》就已经阐述了这个观点。

当我们在讨论是否要使用 NoSQL 的时候,你还需要理解 NoSQL 也是分很多种类的,在 NoSQL 百花齐放的今天,NoSQL 的正确选择比选择关系数据库还具有挑战性。虽然 NoSQL 的使用很简单,但是选择却是个麻烦事,这也正是很多人在观望的一个原因。

NoSQL 的分类

NoSQL 仅仅是一个概念,NoSQL 数据库根据数据的存储模型和特点分为很多种类。

类型

部分代表

特点

列存储

Hbase

Cassandra

Hypertable

顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的 IO 优势。

文档存储

MongoDB

CouchDB

文档存储一般用类似 json 的格式存储,存储的内容是文档型的。这样也就有有机会对某些字段建立索引,实现关系数据库的某些功能。

key-value 存储

Tokyo Cabinet / Tyrant

Berkeley DB

MemcacheDB

Redis

可以通过 key 快速查询到其 value。一般来说,存储不管 value 的格式,照单全收。(Redis 包含了其他功能)

图存储

Neo4J

FlockDB

图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。

对象存储

db4o

Versant

通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。

xml 数据库

Berkeley DB XML

BaseX

高效的存储 XML 数据,并支持 XML 的内部查询语法,比如 XQuery,Xpath。

以上 NoSQL 数据库类型的划分并不是绝对,只是从存储模型上来进行的大体划分。它们之间没有绝对的分界,也有交差的情况,比如 Tokyo Cabinet / Tyrant 的 Table 类型存储,就可以理解为是文档型存储,Berkeley DB XML 数据库是基于 Berkeley DB 之上开发的。

NoSQL 还是关系数据库

虽然 09 年出现了比较激进的文章《关系数据库已死》,但是我们心里都清楚,关系数据库其实还活得好好的,你还不能不用关系数据库。但是也说明了一个事实,关系数据库在处理 WEB2.0 数据的时候,的确已经出现了瓶颈。

那么我们到底是用 NoSQL 还是关系数据库呢?我想我们没有必要来进行一个绝对的回答。我们需要根据我们的应用场景来决定我们到底用什么。

如果关系数据库在你的应用场景中,完全能够很好的工作,而你又是非常善于使用和维护关系数据库的,那么我觉得你完全没有必要迁移到 NoSQL 上面,除非你是个喜欢折腾的人。如果你是在金融,电信等以数据为王的关键领域,目前使用的是 Oracle 数据库来提供高可靠性的,除非遇到特别大的瓶颈,不然也别贸然尝试 NoSQL。

然而,在 WEB2.0 的网站中,关系数据库大部分都出现了瓶颈。在磁盘 IO、数据库可扩展上都花费了开发人员相当多的精力来优化,比如做分表分库(database sharding)、主从复制、异构复制等等,然而,这些工作需要的技术能力越来越高,也越来越具有挑战性。如果你正在经历这些场合,那么我觉得你应该尝试一下 NoSQL 了。

选择合适的 NoSQL

如此多类型的 NoSQL,而每种类型的 NoSQL 又有很多,到底选择什么类型的 NoSQL 来作为我们的存储呢?这并不是一个很好回答的问题,影响我们选择的因素有很多,而选择也可能有多种,随着业务场景,需求的变更可能选择又会变化。我们常常需要根据如下情况考虑:

  1. 数据结构特点。包括结构化、半结构化、字段是否可能变更、是否有大文本字段、数据字段是否可能变化。
  2. 写入特点。包括 insert 比例、update 比例、是否经常更新数据的某一个小字段、原子更新需求。
  3. 查询特点。包括查询的条件、查询热点的范围。比如用户信息的查询,可能就是随机的,而新闻的查询就是按照时间,越新的越频繁。

NoSQL 和关系数据库结合

其实 NoSQL 数据库仅仅是关系数据库在某些方面(性能,扩展)的一个弥补,单从功能上讲,NoSQL 的几乎所有的功能,在关系数据库上都能够满足,所以选择 NoSQL 的原因并不在功能上。

所以,我们一般会把 NoSQL 和关系数据库进行结合使用,各取所长,需要使用关系特性的时候我们使用关系数据库,需要使用 NoSQL 特性的时候我们使用 NoSQL 数据库,各得其所。

举个简单的例子吧,比如用户评论的存储,评论大概有主键 id、评论的对象 aid、评论内容 content、用户 uid 等字段。我们能确定的是评论内容 content 肯定不会在数据库中用 where content=’’查询,评论内容也是一个大文本字段。那么我们可以把 主键 id、评论对象 aid、用户 id 存储在数据库,评论内容存储在 NoSQL,这样数据库就节省了存储 content 占用的磁盘空间,从而节省大量 IO,对 content 也更容易做 Cache。

复制代码
// 从 MySQL 中查询出评论主键 id 列表
commentIds=DB.query("SELECT id FROM comments where aid='评论对象 id' LIMIT 0,20");
// 根据主键 id 列表,从 NoSQL 取回评论实体数据
CommentsList=NoSQL.get(commentIds);

NoSQL 代替 MySQL

在某些应用场合,比如一些配置的关系键值映射存储、用户名和密码的存储、Session 会话存储等等,用 NoSQL 完全可以替代 MySQL 存储。不但具有更高的性能,而且开发也更加方便。

NoSQL 作为缓存服务器

MySQL+Memcached 的架构中,我们处处都要精心设计我们的缓存,包括过期时间的设计、缓存的实时性设计、缓存内存大小评估、缓存命中率等等。

NoSQL 数据库一般都具有非常高的性能,在大多数场景下面,你不必再考虑在代码层为 NoSQL 构建一层 Memcached 缓存。NoSQL 数据本身在 Cache 上已经做了相当多的优化工作。

Memcached 这类内存缓存服务器缓存的数据大小受限于内存大小,如果用 NoSQL 来代替 Memcached 来缓存数据库的话,就可以不再受限于内存大小。虽然可能有少量的磁盘 IO 读写,可能比 Memcached 慢一点,但是完全可以用来缓存数据库的查询操作。

规避风险

由于 NoSQL 是一个比较新的东西,特别是我们选择的 NoSQL 数据库还不是非常成熟的产品,所以我们可能会遇到未知的风险。为了得到 NoSQL 的好处,又要考虑规避风险,鱼与熊掌如何兼得?

现在业内很多公司的做法就是数据的备份。在往 NoSQL 里面存储数据的时候还会往 MySQL 里面存储一份。NoSQL 数据库本身也需要进行备份(冷备和热备)。或者可以考虑使用两种 NoSQL 数据库,出现问题后可以进行切换(避免出现 digg 使用 Cassandra 的悲剧)。

总结

本文只是简单的从 MySQL 和 NoSQL 的角度分析如何选择,以及进行融合使用。其实在选择 NoSQL 的时候,你可能还会碰到关于 CAP 原则,最终一致性,BASE 思想的考虑。因为使用 MySQL 架构的时候,你也会碰到上面的问题,所以这里没有阐述。

关于作者

孙立,目前在凤凰网负责底层组的研发工作。曾就职于搜狐和 ku6。多年互联网从业经验和程序开发,对分布式搜索引擎的开发,高并发,大数据量网站系统架构优化,高可用性,可伸缩性,分布式系统缓存, 数据库分表分库(sharding)等有丰富的经验,并且对运维监控和自动化运维控制有经验。开源项目 phplock,phpbuffer 的作者。近期开发了一个 NOSQL 数据库存储 INetDB, 是 NoSQL 数据库爱好者。他的新浪微博是: http://t.sina.com.cn/sunli1223


感谢张凯峰对本文的策划及审校。

2011-01-22 22:0129353

评论 1 条评论

发布
用户头像
居然搜到了大辉老师
2022-03-30 00:32
回复
没有更多了
发现更多内容

30个类手写Spring核心原理之动态数据源切换(8)

Tom弹架构

Java spring 源码

波卡生态的去中心化存储Crust Network | Hoo虎符研究院

区块链前沿News

波卡生态挖矿 Hoo虎符 虎符交易所 虎符研究院 去中心化存储

[架构实战营] 模块七作业

张祥

架构实战营

如何在 GitHub 上高效阅读源码?

AlwaysBeta

GitHub 源码 源码分析 源码阅读 源码解析

超市发:多措并举 提振销售 服务顾客

科技热闻

从Hadoop框架讨论大数据生态

编程江湖

大数据 hadoop

「Oracle」数据库字符集编码修改

恒生LIGHT云社区

数据库 oracle

微服务架构 | 如何利用日志链路追踪程序执行的慢SQL?

李尚智

性能分析 微服务治理 慢SQL 链路分析

恒源云(GPUSHARE)_[文本分类] 文本数据增强1(论文笔记)

恒源云

深度学习 语音识别

区块链数字收藏品平台开发,数字藏品交易平台搭建

电微13828808271

重点人员管控系统开发搭建,指挥调度平台建设方案

电微13828808271

CRM系统如何帮助企业改变销售周期

低代码小观

程序员 销售管理 销售 CRM CRM系统

Log4j2 Zero Day 漏洞 Apache Flink 应对指南

Apache Flink

大数据 flink log4j2

由IDC余热回收创新技术实践引出的跨界合作探讨

安第斯智能云

算力 碳中和 节能 跨界合作

干货分享!边云融合的时序时空数据库实践详解

百度开发者中心

物联网 时序数据库

一站式云安全保障,就用行云管家!完美保障!

行云管家

云计算 云安全 企业上云 云资源 云管理

如何开始移动网站测试

FunTester

测试 web测试 FunTester 移动端测试 响应式网页

飞桨EasyDL桌面版正式发布 本地数据、本地网络、本地算力也能高效建模

科技热闻

CameraX ImageAnalysis

Changing Lin

12月日更

致敬全新的未来!创业邦100未来独角兽峰会暨2021创业邦年会成功举办

创业邦

智慧社区小程序搭建,智慧平安社区解决方案

电微13828808271

熟悉又陌生的白帽黑客组织OWASP

喀拉峻

黑客 网络安全 安全 OWASP

视频通信中的码率控制算法

拍乐云Pano

音视频 RTC 视频编码 码率控制

🏆【Alibaba中间件技术系列】「RocketMQ技术专题」RocketMQ消息发送的全部流程和落盘原理分析

码界西柚

RocketMQ 消息队列 Apache RocketMQ 12月日更

如何跟踪log4j漏洞原理及发现绕WAF的tips

H

网络安全 漏洞

安全漏洞之任意文件上传漏洞分析

网络安全学海

黑客 网络安全 信息安全 渗透测试 安全漏洞

语音信号处理 4:汉语中语音的分类及韵律特性

轻口味

28天写作 12月日更

【等保小知识】等保一级需要测评吗?

行云管家

网络安全 等保 等级保护 等保一级

2021低代码平台推荐,每一个都具有10年行业开发经验!

J2PaaS低代码平台

低代码 低代码开发 低代码开发平台 地代码平台

“有创业者的地方,创业邦一直都在” 创业邦100未来独角兽峰会暨2021创业邦年会圆满落幕

创业邦

情报信息分析研判系统搭建,情指勤一体化平台建设开发

电微13828808271

关系数据库还是NoSQL数据库_Java_孙立_InfoQ精选文章