收录了 搜索引擎点击 频道下的 50 篇内容
本文将用几张图,来带你看懂今日头条的推荐系统。
搜索是很多用户在天猫购物时的第一入口,搜索结果会根据销量、库存、人气对商品进行排序,而商品的显示顺序往往会决定用户的选择,所以保证搜索结果的实时性和准确性非常重要。在电商系统中,特别是在“双十一”这样的高并发场景下,如何准确展示搜索结果显得尤为重要。在今年的“双十一”活动中,InfoQ有幸采访到了阿里巴巴集团搜索引擎的三位负责人仁基、桂南和悾傅,与他们共同探讨了搜索引擎背后的细节。以下内容根据本次采访整理而成。
本文介绍如何利用算法改进搜索引擎广告关键词的生成。
Neeva 更快、更简单且无广告。但做出比谷歌更好的东西,却并不足以击败谷歌。
大家期望出现一个更好的搜索引擎,AI时代的引擎。
ChatGPT是一项很棒的技术,它很有可能会重新定义我们创建以及与数字信息交互的方式。它可以有许多有趣的应用,包括在线搜索。
从信息获取的角度来看,搜索和推荐是用户获取信息的两种主要手段。无论在互联网上,还是在线下的场景里,搜索和推荐这两种方式都大量并存,那么推荐系统和搜索引擎这两个系统到底有什么关系?区别和相似的地方有哪些?本文作者有幸同时具有搜索引擎和推荐系统一线的技术产品开发经验,结合自己的实践经验来为大家阐述两者之间的关系、分享自己的体会。
如何在不影响用户产品体验的情况下,更精准地推荐用户可能感兴趣的广告,是每个算法工程师长期思考的问题。
虽然很好用,但不是用户心中的 Top1?
全球性的搜索引擎Google,看似简单的搜索框背后隐藏的是极其复杂的系统架构和搜索算法,其中排序(以下统称Ranking)的架构和算法更是关键部分。Google正是通过PageRank算法深刻改变搜索排序而一举击败众多竞争对手。本文将介绍有关搜索引擎排序的相关技术内容。
本文中,我们的目标是解决商品搜索引擎和内容搜索引擎中异构数据排序的问题,给用户推荐丰富的个性化的内容流。我们把算法分成了两部分:1)异构内容流类型排序,即决定每个坑位展示何种类型的内容流,文章、视频还是商品列表;2)同构的内容流内容排序,第二个步骤使用广为人知的DSSM模型,在这个内容流类型下,对内容流的内容进行排序,选择相似度最高的内容插入。
这篇文章将讲述搜索引擎的发展历程,从文本搜索到语音搜索,再到AR/VR,再到智慧城市:搜索引擎的未来……
QCon大会预热采访。360搜索郝一昕。
在这篇文章中,我们将深入剖析向量数据库核心技术的争议点,解释其优势和局限性,为读者提供全面而清晰的了解。
GitHub公开了基于Rust语言的搜索引擎技术原理。
在搜索、推荐、广告引擎中,系统会通过复杂算法生成一个最终的结果列表。用户在看到这个结果列表时,未必都会对排序满意,比如有时觉得排序的顺序有问题,或者发现一些不符合喜好的item。如果从算法层面来调优,总会有按住葫芦起了瓢的感觉,优化了某些bad case的同时,会带来新的bad case,这种情况下,往往就需要点击模型来在“近线端”进行修正。通过用户的点击反馈,可以从算法的另一个层面,对结果进行调优:将符合用户偏好但位置靠后的item提取至前,或者将不符合用户意图的item降权减分。达观数据在引擎架构研发实践中,大量使用到了点击模型,通过与用户的隐性交互,大幅提升了算法效果,积累了丰富的实战经验。
整理|辛晓亮 搜索垄断地位与隐私展开讨论,这里简要总结分享出来。 年出生于美国乔治亚州亚特兰大,父亲是医师和传染病专家,母亲是全职主妇。
本文结合作者的电商算法经验,以手淘搜索为例展开,介绍产品和诉求层面以及如何使用搜索入口来做用户引导
获取信息是人类认知世界、生存发展的刚需,搜索就是最明确的一种方式,其体现的动作就是“出去找”,找食物、找地点等,到了互联网时代,搜索引擎(Search Engine)就是满足找信息这个需求的最好工具,你输入想要找的内容(即在搜索框里输入查询词,或称为 Query),搜索引擎快速的给你最好的结果,这样的刚需催生了谷歌、百度这样的互联网巨头。 本文结合达观在垂直搜索引擎建设方面的经验,主要围绕以下内容展开: 用户搜索意图的理解及其难点解析 如何进行用户搜索意图理解 达观数据用户搜索意图理解引擎介绍。
本文会向大家讲述搜索引擎的基本知识以及中文分词的一些方法、然后会做一个小的demo去尝试一下数据检索。