写点什么

Datumbox:基于 Java 的新的开源机器学习框架

  • 2014-10-24
  • 本文字数:1813 字

    阅读完需:约 6 分钟

当今时代的探索和发现都是基于大量的算法、模型以及统计学的测试和工具。Datumbox 公司应运而生,它提供了一套强有力的基于 Java 的开源机器学习框架。

Datumbox API 提供了海量的分类器和自然语言处理服务,能够被应用在很多领域的应用,包括了情感分析、话题分类、语言检测、主观分析、垃圾邮件检测、阅读评估、关键词和文本提取等等。目前,Datumbox 所有的机器学习服务都能够通过 API 获取,该框架能够让用户迅速地开发自己的智能应用。目前,基于 GPL3.0 的 Datumbox 机器学习框架已经开源并且可以从 GitHub 上进行下载。

早期的 Datumbox 0.3.x 之前的框架是去年 8 月和 9 月开发的,它们是使用 PHP 来写的。在今年的五月和六月,新的 0.4.x 版本使用 Java 语言并且扩展了很多特性。这些版本都已经通过了商业应用的深度测试。目前的版本是 Datumbox 0.5.0,相关功能正在进一步完善,这只是第一款对于公众发布的 Alpha 版本。尽管是第一款,框架的 API 已经通过了无数的测试。并且在不久,将会有更加稳定并且优良的版本。

Datumbox 的机器学习平台很大程度上已经能够取代普通的智能应用。用户可以很轻松地注册,并且使用其强有力的、易于使用的 API 来构建自己智能平台服务。Datumbox 的机器学习 API 让每个开发者都能够迅速地构建自己的智能软件和服务。整个实现过程是十分简单的,几分钟就能够搞定。它具有如下几个显著的优点:

  1. 强大并且开源。Datumbox API 使用了强大的开源机器学习框架 Datumbox ,使用其高度精确的算法能够迅速地构建创新的应用。
  2. 易于使用。平台 API 十分易于使用,它使用了 REST&JSON 的技术,对于所有的分类器都提供了一套普通的接口,并且有一套简明的文档和代码样例,来帮助用户进行开发。
  3. 迅速使用。Datumbox 去掉了那些很花时间的复杂机器学习训练模型。用户能够通过平台直接使用分类器。

Datumbox 主要可以应用在四个方面。一个是社交媒体的监视,评估用户观点能够通过机器学习解决,Datumbox 能够帮助用户构建自己的社交媒体监视工具。第二是搜索引擎优化,其中非常有效的方法就是文档中重要术语的定位和优化。第三点是质量评估,在在线通讯中,评估用户产生内容的质量对于去除垃圾邮件是非常重要的,Datumbox 能够自动的评分并且审核这些内容。最后是文本分析,自然语言处理和文本分析工具推动了网上大量应用的产生,平台 API 能够很轻松地帮助用户进行这些分析。

类似于 Datumbox, Mahout Scikit-Learn 也是同一类型的项目,尽管它们拥有完全不同的目标。Mahout 仅仅支持有限的并行算法,这样能够使用 Hadoop 的 Map-Reduce 框架处理大数据。对于另外一个,Scikit-Learn 支持大量的算法但是它不能处理海量的数据。另外,它是基于 Python 进行开发的,能够很好的进行样板开发和科学计算,但并不是软件开发的最好的语言。

不同于如上两种平台,Datumbox 框架采取了一个折中的方式。它使用了 Java,尝试去支持大量的算法,这意味着它能够更轻松地包含产品代码,并且能够调整优化以减少内存消耗,从而使用在实时的系统中。尽管当前 Datumbox 框架只能处理到中型的数据集,它具有扩展到处理大数据的能力。

从平台的各个方面来看,特别是这仅仅是一个 Alpha 版本,Datumbox 机器学习框架有它自己的独特的但是可以接受的限制:

  1. 文档限制:目前说明文档没有很好覆盖所有的部分,更多的需要进行补充。
  2. 没有多线程:这个框架目前没有支持多线程处理,当然并不是所有的机器学习算法都可以并行化。
  3. 代码样例:尽管这个框架已经被发布,在网上可以找到的代码样例是很少的。
  4. 代码结构:为这样一个巨大的工程构建一个坚固的框架是很具有挑战性的,除此之外还需要处理可能彼此之间完全不同的机器学习算法。
  5. 模型持续性和大数据集:目前训练出的模型以 MongoDM 数据库形式存储在硬盘中。为了处理大量的数据,必须要开发另外的解决方案。例如 MapDB 可能是一个很好的选择。
  6. 新的算法、测试以及模型:目前还有很多很强大的技术没有被支持,特别是时序分析方面的技术。

总之,Datumbox 开源项目是一个新推出的很好的项目。对于机器学习、大数据处理方面很有需要的研究者来说,这不得不说是一个福音。用户可以尝试去深究一下开源的代码,从而更加深刻地了解这个平台,让自己地研究更加迅速和模式化。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-10-24 01:334704
用户头像

发布了 268 篇内容, 共 137.1 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

开源 DevOps 工具,你值得拥有!

飞算JavaAI开发助手

10大常用的排序算法(算法分析+动图演示)

Five

算法 排序算法 8月月更

【小程序】view视图,swiper轮播图,scroll-view滑动列表 (在线详细手册)

计算机魔术师

8月月更

Databend 源码阅读系列(一): 开篇

Databend

源码阅读 源码剖析 云平台 大数据 开源 databend

选择web前端培训机构需要注意什么?

小谷哥

一文读懂数据科学Notebook

Baihai IDP

人工智能 ide AI notebook 数据科学

详解 Sqllogictest

Databend

大数据 databend Sqllogictest

SpringCloud Eureka参数配置项详解

echoes

web前端培训学习应该注意什么

小谷哥

另眼旁观 Linkerd 2.12 的发布:服务网格标准的曙光?

张晓辉

云原生 kuberne Linkerd 服务网格

Tapdata 获得阿里云首批产品生态集成认证,携手阿里云共建新合作

阿里巴巴云原生

阿里云 Serverless 云原生 SAE 合作

Java反射是什么

TimeFriends

8月月更

如何有效改进回顾会议(下)?

敏捷开发

Scrum 回顾会 Scrum团队

分分钟带你了解 ES2022 最重要的 4 个特性!

掘金安东尼

前端 8月月更 ES2022

设计模式的艺术 第十章桥接设计模式练习(设计一个数据转换工具,可以将数据库中的数据转换成多种文件格式,例如txt、xml、pdf等格式,同时该工具需要支持多种不同的数据库)

代廉洁

设计模式的艺术

阿里云首期云原生加速器第二次集结活动成功举办,秒云获阿里云加速器荣誉伙伴认证

MIAOYUN

阿里云产品集成认证 阿里云产品生态集成认证 阿里云云原生加速器 阿里云首期云原生加速器 阿里云加速器荣誉伙伴

Databend v0.8 新版本上线!

Databend

开源社区 云平台 大数据 开源 databend

【小程序项目开发 --- 京东商城】 启航篇之uni-app项目搭建

计算机魔术师

8月月更

如何快速地学习东西(下篇)

宇宙之一粟

学习方法 8月月更

大厂裁员小厂跑路,是时候做这件事了,否则到时可别后悔!!!

CRMEB

研发管理 DevOps 最佳实践之三问三答

极狐GitLab

DevOps gitlab CI/CD 代码规范 gitops

建成 5000 多间「梦想中心」后,他们决定将技术开源

腾源会

开源 公益 腾源会

为什么MatrixOne 0.5变慢了

MatrixOrigin

矩阵起源 MatirxOrigin MatirxOne 因子化

ClickHouse 挺快,esProc SPL 更快

dvlinker

数据库 oracle sql Clickhouse SPL

SpringCloud 注册中心 (Eureka) 快速入门

微服务 Eureka SpringCould 8月月更

深圳选择java培训机构哪家靠谱?

小谷哥

参加大数据培训机构学习前景怎么样

小谷哥

ClickHouse与Elasticsearch压测实践

京东科技开发者

elasticsearch 分布式 数据分析 Clickhouse 数据库·

java程序员培训学习需要多长时间?

小谷哥

无需编写一行代码,实现任何方法的流量防护能力

阿里巴巴云原生

阿里云 微服务 云原生 流量

【小程序项目开发-- 京东商城】uni-app开发之配置 tabBar & 窗口样式

计算机魔术师

8月月更

Datumbox:基于Java的新的开源机器学习框架_Java_张天雷_InfoQ精选文章