硬核干货——《中小企业 AI 实战指南》免费下载! 了解详情
写点什么

谷歌开发一 AI 系统,可预测医生 75% 的处方

  • 2020-04-24
  • 本文字数:1542 字

    阅读完需:约 5 分钟

谷歌开发一AI系统,可预测医生75%的处方

发表在《临床药理学与治疗学》杂志上的一篇论文称,谷歌和加州大学旧金山分校的研究人员开发的一个人工智能系统,在 75%的情况下能预测医生的处方决定。如果有一天将其应用到医疗系统中,它可以根据患者的状况识别出看起来不正常的处方,类似于信用卡公司使用的欺诈检测方案。


“虽然没有医生、护士或药剂师会希望犯伤害病人的错误,但研究表明,2%的住院患者会遇到严重但可预防的药物治疗事件,它们可能危及生命,造成永久性伤害,或导致死亡,”研究员 Kathryn Rough 和谷歌健康医学博士 Alvin Rajkomar 在一篇博文中写到,“然而,在特定的时间,面对特定的病人,决定哪种药物适用是很复杂的——医生和药剂师要经过多年的训练才能获得这项技能。”


为此,该 AI 系统训练使用的数据集包含来自 10 万多次住院治疗的大约三百万个用药医嘱,在使用这些回顾性的电子医疗记录数据时,研究人员依照 HIPAA 随机更改了日期,并删除了部分记录(包括姓名、地址、联系方式、记录号、医生姓名、文字注释、图片、等等)。重要的是,数据集并不局限于特定的疾病或治疗领域,这使得任务更具挑战性,但也有助于确保模型能够适用于更多的情况。


研究人员评估了两种模型:(1)一个是长短时记忆(LSTM)递归神经网络,它学习对长期依赖关系建模;(2)一个是类似于临床健康研究中常用的逻辑模型。两者都与同一基准进行比较,根据病人接受的医院服务(如普通内科、普通外科、妇产科、心内科)和住院时间长短对最常开具的药物进行排序。对于回顾性数据中每次开具的药物,这些模型都会列出 990 种可能的药物,对于每一个病例,研究人员评估了这些模型是否对医生实际开具的药物赋予了较高的概率。


模型效果的评估是通过比较模型提供的药物排名与医生实际开具的药物得出的。表现最好的是 LSTM,排名前十的名单中,有 93%至少包含一种药物,临床医生会在第二天为特定的病人开具。在 55%的病例中,模型正确地将医生开具的药物列为最可能服用的 10 种药物之一,开具的药物中,有 75%排在前 25 名。


“重要的是要记住,以这种方式训练的模型重现了历史数据中医生的行为,而没有学习最佳的处方模式,这些药物可能的效果,或可能发生什么副作用。”在我们下一阶段的研究中,我们将研究下,在什么情况下,这些模型可以为发现可能伤害患者的用药错误提供帮助,”研究人员写道,“我们期待着与医生、药剂师、其他临床医生和患者合作,我们将继续研究,以量化这种模型是否有能力捕捉错误,确保患者在医院的安全。”


退一步说,在医疗保健领域的 AI 应用方面,谷歌开展了广泛的工作。这家科技巨头已经开发出一种模型,能以“人类的精度水平”对胸透 X 光片进行分类,并提出了一种用于医学影像的 AI 迁移学习的混合方法


去年,谷歌宣称,它的肺癌检测人工智能战胜了 6 名人类放射科医生,而且它的皮肤炎症诊断模型能像皮肤科医生一样准确地检测出 26 种皮肤炎症。最近,该公司表示,它已经训练了一个人工智能模型,可以从乳腺 X 线影像中识别乳腺癌,几乎没有假阳性。它与印度马杜赖的阿拉文德眼科医院(Aravind Eye Hospital)合作,部署了一个机器学习模型,可以从视网膜图像诊断眼部疾病。


对于眼部诊断模型,谷歌 AI 首席 Jeff Dean 这样,“现在,你可以用视网膜图像来做检测,其准确性与侵入性更强的血液检测一样。这可能会成为一种新事物——当你去看医生,他们会给你的眼睛拍照,我们会有你的眼睛的纵向病史,并能从中学到新东西。这可算是最高标准的治疗。通过良好的、高质量的训练数据,你可以训练一个模型,并获得视网膜眼科医生的效果。”


本文最初发布于 VentureBeat 博客,经原作者授权由 InfoQ 中文站翻译并分享。


延伸阅读:


https://venturebeat.com/2020/04/02/googles-ai-predicts-physicians-prescribing-decisions-75-of-the-time/


2020-04-24 07:053056
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 588.5 次阅读, 收获喜欢 1981 次。

关注

评论

发布
暂无评论
发现更多内容

5.10版本linux内核的使用slub的kmem_cache_init函数解析

linux大本营

内存管理 Linux内核 slub slab

数说热点|米哈游新作《崩坏:星穹铁道》今日公测,能否再现原神奇迹?

MobTech袤博科技

读《分布式商业》有感

后台技术汇

分布式 三周年连更

当生成式AI照进医疗,医患关系将何去何从?

白洞计划

医疗

云BI产品瓴羊Quick BI,为企业数字化转型保驾护航

巷子

eBPF的发展演进---从石器时代到成为神(三)

统信软件

操作系统 Linux内核

电子签赛道驶向深水区,法大大以数智化引领创新

ToB行业头条

如何使用 SCP 和 Rsync 在 Linux 中传输文件

wljslmz

Linux 三周年连更

第五期(2022-2023)传统行业云原生技术落地调研报告——金融篇

York

容器 DevOps 微服务 云原生 金融

c++17使用多线程编程的时候在编译时要怎么处理

linux大本营

多线程 C++

spdk里是怎么运行nvmf-tgt的

linux大本营

spdk

对数据库中存储的程序进行现代化改造,以使用 Amazon Aurora PostgreSQL 联合查询、pg_cron 和 Amazon Lambda

亚马逊云科技 (Amazon Web Services)

一个有趣的图片加载效果

南城FE

CSS 前端 动画 图片

打工人逃不开「单人单岗」

Java 架构 程序人生 职场

使用tc+iptables对指定的socket进行限速

linux大本营

TCP socket 网络 iptables

《雄安新区2022年大数据研究报告》发布

百度开发者中心

智慧城市

容量成本性能全都要有, Redis 容量版 PegaDB 设计与实践

百度开发者中心

云数据库 百度智能云

Go sync.Once:简约而不简单的并发利器

陈明勇

Go golang 高并发 三周年连更 sync.Once

有奖征文丨【玩转Cloud Studio】第二季来啦!

CODING DevOps

Cloud Studio 云端IDE 在线编程 有奖征文 活动推荐

c++单例模式的所有面经

linux大本营

设计模式 单例模式 C++

KubeVela:一场向应用交付标准的“冲锋”

RRLL

阿里云 数据湖 云原生 KubeVela 应用交付

用c语言写一个目录遍历程序

linux大本营

C语言 目录遍历

YashanDB V22.2重磅发布!七大亮点带你了解新特性

YashanDB

数据库

【Python实战】Python采集度贴吧排行榜

BROKEN

三周年连更

重磅!阿里云云原生合作伙伴计划全新升级:加码核心权益,与伙伴共赢新未来

阿里巴巴云原生

阿里云 云原生 生态合作

linux设置虚拟IP

linux大本营

Linux 网络 IP地址

从 Milvus 2.2 到 2.2.6,我们是如何持续稳定升级的

Zilliz

非结构化数据 Milvus 向量数据库

什么是文件传输,介绍文件传输的发展进程

镭速

什么是Java 异常?如何处理异常?

Java架构历程

Java 三周年连更

来字节跳动实习,有机会发Nature子刊

字节跳动技术范儿

谷歌开发一AI系统,可预测医生75%的处方_AI&大模型_KYLE WIGGERS_InfoQ精选文章