2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

Python 中常见的数据结构:字典、映射和散列表

  • 2019-09-30
  • 本文字数:2540 字

    阅读完需:约 8 分钟

Python中常见的数据结构:字典、映射和散列表

在 Python 中,字典是核心数据结构。字典可以存储任意数量的对象,每个对象都由唯一的字典键标识。


字典通常也被称为映射、散列表、查找表或关联数组。字典能够高效查找、插入和删除任何与给定键关联的对象。


这在现实中意味着什么呢?字典对象相当于现实世界中的电话簿。


电话簿有助于快速检索与给定键(人名)相关联的信息(电话号码)。因此不必为了查找某人的号码而浏览整本电话簿,根据人名基本上就能直接跳到需要查找的相关信息。


若想研究以何种方式组织信息才有利于快速检索,上述类比就不那么贴切了。但基本性能特征相同,即字典能够用来快速查找与给定键相关的信息。


总之,字典是计算机科学中最常用且最重要的数据结构之一。


那么 Python 如何处理字典呢?


我们来看看 Python 及其标准库中可用的字典实现。

dict——首选字典实现

由于字典非常重要,因此 Python 直接在语言核心中实现了一个稳健的字典 1:dict 数据类型 2。


1 为了与其他资料统一,这里将不区分中文语境下的 dict(字典)和“字典类型的数据结构”,统称为“字典”。——译者注


2 详见 Python 文档:“Mapping Types — dict”。


Python 还提供了一些有用的“语法糖”来处理程序中的字典。例如,用花括号字典表达式语法和字典解析式能够方便地创建新的字典对象:


phonebook = {    'bob': 7387,    'alice': 3719,    'jack': 7052,}
squares = {x: x * x for x in range(6)}
>>> phonebook['alice']3719
>>> squares{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
复制代码


关于哪些对象可以作为字典键,有一些限制。


Python 的字典由可散列类型 3 的键来索引。可散列对象具有在其生命周期中永远不会改变的散列值(参见__hash__),并且可以与其他对象进行比较(参见__eq__)。另外,相等的可散列对象,其散列值必然相同。


像字符串和数这样的不可变类型是可散列的,它们可以很好地用作字典键。元组对象也可以用作字典键,但这些元组本身必须只包含可散列类型。


Python 的内置字典实现可以应对大多数情况。字典是高度优化的,并且是 Python 语言的基石,例如栈帧中的类属性和变量都存储在字典中。


Python 字典基于经过充分测试和精心调整过的散列表实现,提供了符合期望的性能特征。一般情况下,用于查找、插入、更新和删除操作的时间复杂度都为 O(1)。


大部分情况下,应该使用 Python 自带的标准字典实现。但是也存在专门的第三方字典实现,例如跳跃表或基于 B 树的字典。


除了通用的 dict 对象外,Python 的标准库还包含许多特殊的字典实现。它们都基于内置的字典类,基本性能特征相同,但添加了其他一些便利特性。


下面来逐个了解一下。

collections.OrderedDict——能记住键的插入顺序

collections.OrderedDict 是特殊的 dict 子类,该类型会记录添加到其中的键的插入顺序。


尽管在 CPython 3.6 及更高版本中,标准的字典实现也能保留键的插入顺序,但这只是 CPython 实现的一个副作用,直到 Python 3.7 才将这种特性固定下来了。因此,如果在自己的工作中很需要用到键顺序,最好明确使用 OrderedDict 类。


顺便说一句,OrderedDict 不是内置的核心语言部分,因此必须从标准库中的 collections 模块导入。


>>> import collections>>> d = collections.OrderedDict(one=1, two=2, three=3)
>>> dOrderedDict([('one', 1), ('two', 2), ('three', 3)])
>>> d['four'] = 4>>> dOrderedDict([('one', 1), ('two', 2), ('three', 3), ('four', 4)])
>>> d.keys()odict_keys(['one', 'two', 'three', 'four'])
复制代码

collections.defaultdict——为缺失的键返回默认值

defaultdict 是另一个 dict 子类,其构造函数接受一个可调用对象,查找时如果找不到给定的键,就返回这个可调用对象。


与使用 get()方法或在普通字典中捕获 KeyError 异常相比,这种方式的代码较少,并能清晰地表达出程序员的意图。



>>> from collections import defaultdict>>> dd = defaultdict(list)
# 访问缺失的键就会用默认工厂方法创建它并将其初始化# 在本例中工厂方法为list():>>> dd['dogs'].append('Rufus')>>> dd['dogs'].append('Kathrin')>>> dd['dogs'].append('Mr Sniffles')
>>> dd['dogs']['Rufus', 'Kathrin', 'Mr Sniffles']
复制代码

collections.ChainMap——搜索多个字典

collections.ChainMap 数据结构将多个字典分组到一个映射中 8,在查找时逐个搜索底层映射,直到找到一个符合条件的键。对 ChainMap 进行插入、更新和删除操作,只会作用于其中的第一个字典。


>>> from collections import ChainMap>>> dict1 = {'one': 1, 'two': 2}>>> dict2 = {'three': 3, 'four': 4}>>> chain = ChainMap(dict1, dict2)
>>> chainChainMap({'one': 1, 'two': 2}, {'three': 3, 'four': 4})
# ChainMap在内部从左到右逐个搜索,# 直到找到对应的键或全部搜索完毕:>>> chain['three']3>>> chain['one']1>>> chain['missing']KeyError: 'missing'
复制代码

types.MappingProxyType——用于创建只读字典

MappingProxyType 封装了标准的字典,为封装的字典数据提供只读视图。该类添加自 Python 3.3,用来创建字典不可变的代理版本。


举例来说,如果希望返回一个字典来表示类或模块的内部状态,同时禁止向该对象写入内容,此时 MappingProxyType 就能派上用场。使用 MappingProxyType 无须创建完整的字典副本。


>>> from types import MappingProxyType>>> writable = {'one': 1, 'two': 2}>>> read_only = MappingProxyType(writable)
# 代理是只读的:>>> read_only['one']1>>> read_only['one'] = 23TypeError:"'mappingproxy' object does not support item assignment"
# 更新原字典也会影响到代理:>>> writable['one'] = 42>>> read_onlymappingproxy({'one': 42, 'two': 2})
复制代码

小结:Python 中的字典

本节列出的所有 Python 字典实现都是内置于 Python 标准库中的有效实现。


一般情况下,建议在自己的程序中使用内置的 dict 数据类型。这是优化过的散列表实现,功能多且已被直接内置到了核心语言中。


如果你有内置 dict 无法满足的特殊需求,那么建议使用本节列出的其他数据类型。


虽然前面列出的其他字典实现均可用,但大多数情况下都应该使用 Python 内置的标准 dict,这样其他开发者在维护你的代码时就会轻松一点。


本文内容来自作者图书作品《深入理解 Python 特性》,点击购买


2019-09-30 14:311771

评论

发布
暂无评论
发现更多内容

政法委跨单位重点人员联防联控平台建设,治安防控系统开发

a13823115807

ThinkPHP6和GatewayWorker简单的示例

CRMEB

深入浅出Apache Pulsar(1):Pulsar vs Kafka

云智慧AIOps社区

kafka 云原生 消息队列 kafka运维 Apache Pulsar 消息系统

Hoo虎符研究院|区块链简报 20220117期

区块链前沿News

Hoo虎符 Hoo 虎符研究院 区块链资讯

低代码实现探索(二十二)如何构建一个可以看的懂的系统

零道云-混合式低代码平台

3DCAT荣获2021金陀螺“年度XR行业技术创新奖”“年度优秀VR行业应用奖”两项大奖

3DCAT实时渲染

云计算 教育 VR/AR 渲染 渲染器

Kafka 为什么这么快?多的是你不知道的事

码哥字节

kafka 消息队列 1月日更 1月月更

Android 64位架构适配

百瓶技术

andiod 客户端

【高并发】导致并发编程频繁出问题的“幕后黑手”

冰河

并发编程 多线程 高并发 协程 异步编程

CPython 性能将提升 5 倍?faster-python 项目 PEP 659 源码级解读

阿里巴巴终端技术

Python 源码 源码分析 CPython

表单数据高级搜索功能设计

全象云低代码

搜索引擎 前端 低代码 搜索 表单

如何基于知识图谱实体解析技术进行数据优化?

索信达控股

人工智能 AI 知识图谱 数据优化 索信达控股

前额皮质如何影响我们的工作效率?

LigaAI

工作效率 脑科学

架构实战训练营-模块7-作业

温安适

「架构实战营」

Go 语言快速入门指南:Go 并发初识

宇宙之一粟

golang 并发 Go 语言 1月月更

腾讯自选股如何实现单位小时内完成千万级数据运算

ninetyhe

腾讯 海量数据 分布式,

聚类算法有哪些?又是如何分类?

郑州埃文科技

数据分析 聚类算法

使用无参数函数进行命令执行

网络安全学海

黑客 网络安全 信息安全 渗透测试 安全漏洞

架构实战营第 4 期 -- 模块七作业

烈火干柴烛灭田边残月

架构实战营

人效将是快消品企业未来发展的最大瓶颈

百度大脑

人工智能

使用Rainbond打包业务模块,实现业务积木式拼装

北京好雨科技有限公司

十大视频场景化应用工具+五大视频领域冠军/顶会算法重磅开源!

百度大脑

redis未授权访问漏洞复现

喀拉峻

redis 黑客 网络安全 安全 信息安全

Scrum Master如何参与每日Scrum(Daily Scrum)

Bruce Talk

Scrum 敏捷 Agile Coach/Facilitate

(1-14/14) 首位销售人员

mtfelix

300天创作 2022Y300P

网络安全kali渗透学习 web渗透入门 Kali系统的国内源配置

学神来啦

APICloud 原生模块、H5模块、多端组件使用教程

YonBuilder低代码开发平台

前端开发 APP开发 APICloud 模块 跨端开发

Python 为什么不设计 do-while 循环结构?

Python猫

Python

如何处理消息丢失问题?

JavaEdge

1月月更

混沌工程之 Linux 网络故障模拟工具TC

zuozewei

Linux 混沌工程 1月月更

Python中常见的数据结构:字典、映射和散列表_编程语言_Dan Bader_InfoQ精选文章