写点什么

如何使用 TensorFlow 构建机器学习模型

  • 2021-10-21
  • 本文字数:2521 字

    阅读完需:约 8 分钟

如何使用TensorFlow构建机器学习模型

在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。

 

TensorFlow 是一个由谷歌开发的库,并在 2015 年开源,它能使构建和训练机器学习模型变得简单。

 

我们接下来要建立的模型将能够自动将公里转换为英里,在本例中,我们将创建一个能够学习如何进行这种转换的模型。我们将向这个模型提供一个CSV文件作为输入,其中有 29 组已经执行过的公里和英里之间的转换,基于这些数据,我们的模型将学会自动进行这种转换。

 

我们将使用有监督学习算法,因为我们知道数据的输入和输出结果。并使用 Python 作为编程语言。Python 提供了一系列与机器学习相关的方便的库和工具。本例中所有的步骤都是使用Google Colab执行的。Google Colab 允许我们在浏览器上零配置地编写和执行 Python 代码。

导入必需的库


我们首先导入在我们的例子中将要使用到的库。


import tensorflow as tfimport pandas as pdimport seaborn as snsimport matplotlib.pyplot as plt
复制代码


  • 我们将导入 TensorFlow 来创建我们的机器学习模型。

  • 我们还将导入 Pandas 库来读取包含有公里和英里转换数据的 CSV 文件。

  • 最后,我们将导入 Seaborn 和 Matlotlib 库绘制不同的结果。

加载样例数据


我们将含有逗号分隔的值的文件(Kilometres-miles.csv)读取到我们的数据帧中。这个文件包含一系列公里和英里值的转换。我们将使用这些数据帧来训练我们的模型。你可以在这个链接下载这个文件。

 

要从 Google Colab 读取文件,你可以使用不同的方法。在本例中,我直接将 CSV 文件上传到我的 Google Colab 上的 sample_data 文件夹中,但你可以从一个 URL 中读取文件(比如,从 GitHub)。

 

上传到 Google Colab 的问题是,数据会在运行时重启时丢失。


数据帧是二维的大小可变的并且各种各样的表格数据。


df  = pd.read_csv('/content/sample_data/Kilometres-miles.csv')df.info
复制代码


示例数据信息

绘制数据帧


我们将“searborn”库的“scatterplot”导入并命名为“sns”,然后使用这个库来绘制上述图形。它显示了 X(公里)和 Y(英里)对应关系的图形化表示。


print("Painting the correlations")#Once we load seaborn into the session, everytime a matplotlib plot is executed, seaborn's default customizations are addedsns.scatterplot(df['Kilometres'], df['Miles'])plt.show()
复制代码


公里和英里的相关性


我们定义数据帧的输入和输出来训练模型:

X(公里)是输入,Y(英里)是输出。


print("Define input(X) and output(Y) variables")X_train=df['Kilometres']y_train=df['Miles']
复制代码

输入和输出变量

创建神经网络


现在,让我们使用“keras.Sequential”方法来创建一个神经网络,其中依次添加“layers”。每一个层(layer)都具有逐步提取输入数据以获得所需输出的功能。Keras 是一个用 Python 写的库,我们创建神经网络并使用不同的机器学习框架,例如 TensorFlow。

 

接下来,我们将使用“add”方法向模型添加一个层。


print("Creating the model")model = tf.keras.Sequential()model.add(tf.keras.layers.Dense(units=1,input_shape=[1]))
复制代码

创建神经网络

编译模型


在训练我们的模型之前,我们将在编译步骤中添加一些额外设置。

 

我们将设置一个优化器和损失函数,它们会测量我们的模型的准确性。Adam 优化是一种基于第一次和第二次矩的自适应预算的随机梯度下降算法。

为此,我们将使用基于平均方差的损失函数,它测量了我们预测的平均方差。

 

我们的模型的目标是最小化这个函数。


print("Compiling the model")model.compile(optimizer=tf.keras.optimizers.Adam(1), loss='mean_squared_error')
复制代码

编译模型

训练模型


我们将使用“拟合(fit)”方法来训练我们的模型。首先,我们传入独立变量或输入变量(X-Kilometers)和目标变量(Y-Miles)。

 

另一方面,我们预测 epoch 的数值。在本例中,epoch 值是 250。一个 epoch 就是遍历一遍所提供的完整的 X 和 Y 数据。

 

  • 如果 epoch 的数值越小,误差就会越大;反过来,epoch 的数值越大,则误差就会越小。

  • 如果 epoch 的数值越大,算法的执行速度就会越慢。

 

print ("Training the model")epochs_hist = model.fit(X_train, y_train, epochs = 250)
复制代码


训练模型的控制台

评估模型


现在,我们评估创建的模型,在该模型中,我们可以观察到损失(Training_loss)随着执行的遍历次数(epoch)的增多而减少,如果训练集数据有意义并且是一个足够大的组,这是合乎逻辑的。


print("Evaluating the model")print(epochs_hist.history.keys())

#graphplt.plot(epochs_hist.history['loss'])plt.title('Evolution of the error associated with the model')plt.xlabel('Epoch')plt.ylabel('Training Loss')plt.legend('Training Loss')plt.show()
复制代码



从图中我们可以看出,用 250 次训练模型并没有多大帮助,在第 50 次遍历后,误差并没有减少。因此,训练该算法的最佳遍历数大约是 50。

进行预测


现在我们已经训练了我们的模型,我们可以使用它来进行预测。

 

在本例中,我们将 100 赋值给模型的输入变量,然后模型会返回预测的英里数:


kilometers = 100predictedMiles = model.predict([kilometers])print("The conversion from Kilometres to Miles is as follows: " + str(predictedMiles))
复制代码


从公里到英里的换算为 62.133785.

检查结果

milesByFormula = kilometers * 0.6214print("The conversion from kilometers to miles using the mathematical formula is as follows:" + str(milesByFormula))diference = milesByFormula - predictedMilesprint("Prediction error:" + str(diference))
复制代码


使用公式从公里到英里的换算值为:62.13999999999999。预测误差为 0.00621414

总结


通过本例,我们了解了如何使用 TensorFlow 库来创建一个模型,这个模型已经学会自动将公里数转换为英里数,并且误差很小。

 

TensorFlow 用于执行此过程的数学非常简单。基本上,本例使用线性回归来创建模型,因为输入变量(公里数)和输出变量(英里数)是线性相关的。在机器学习中,过程中最耗时的部分通常是准备数据。

 

随着时间的推移,我们收获了一些经验,这些经验可以帮助我们选择最适合的算法及其设置,但一般来说,这是一项分析测试并改进的任务。

 

作者介绍

Kesk -*- ,软件工程师,软件爱好者,科幻作家。

 

原文链接

Build Your First Machine Learning Model With TensorFlow

2021-10-21 14:471650

评论

发布
暂无评论
发现更多内容

数据系统提供商极道科技加入龙蜥社区

OpenAnolis小助手

Linux 开源 数据系统

Python 中 base64 编码与解码

AlwaysBeta

Python 程序员 编程语言 base64

用 python selenium 爬简书,Python自动化领域之 Selenium WebDriver 学习第2篇

梦想橡皮擦

Python 3月月更

ironSource 新功能发布,开发者可在同一会话中实时调整广告策略

Geek_2d6073

一文带你看懂HarmonyOS应用上架

HarmonyOS开发者

HarmonyOS 应用开发

HertzBeat赫兹跳动v1.0.beta.4 发布, 易用友好的高性能监控告警系统

TanCloud探云

开源 APM 监控 监控系统 监控告警

应用数仓ODBC前,这些问题你需要先了解一下

华为云开发者联盟

数据库 GaussDB(DWS) 驱动 ODBC 驱动管理器

星环科技ArgoDB 3.2正式发布,全面升级易用性、性能和安全

星环科技

数据库

新思科技最新报告显示97%的应用存在漏洞

InfoQ_434670063458

新思科技 应用安全

【案例】基于星环科技数据云平台TDC为富国基金建设万能的数据湖

星环科技

数据库

阿里云智能编码插件,更Cosy的开发体验

阿里云云效

Java 阿里云 程序员 开发 研发

布局说明 - 大屏云极简使用手册

shulinwu

可视化 数据可视化 大屏可视化 智慧大屏可视化 大屏

Nebula Graph 的 KV 存储分离原理和性能测评

NebulaGraph

图数据库 分布式图数据库

融云 IM 在 Electron 平台上的设计实践

融云 RongCloud

Android包体积优化上篇- 资源混淆优化

百度Geek说

百度 前端 后端 优化 包体积

赋能金融领域,国密改造让安全合规更加牢固

电子信息发烧客

安全

虎符研究院关于 Manta Network平行链解决方案的分享

区块链前沿News

虎符交易所 币圈后浪

易观分析对《关于银行业保险业数字化转型的指导意见》的解读

易观分析

银行 数字化

组件简介 - 大屏云极简使用手册

shulinwu

数据可视化 大屏可视化 智慧大屏可视化 大屏

跨团队协作:提高团队生产力的 7 种策略

小炮

团队管理 知识管理 团队协作 办公效率

低代码平台设计探索,如何更好赋能开发者

雯雯写代码

低代码 开发平台 开发者,

教你如何使用flask实现ajax数据入库

华为云开发者联盟

Python 数据库 flask 文件上传 ajax数据

Web 键盘输入法应用开发指南 (2) —— 键盘事件

天择

JavaScript 键盘 输入法 3月月更

墨天轮国产数据库沙龙 | 许力:阿里云原生Lindorm TSDB数据库,驱动工业IT&OT超融合数字化系统升级

墨天轮

数据库 阿里云 tsdb

实践GoF的23种设计模式:SOLID原则(上)

华为云开发者联盟

设计模式 GoF SOLID SOLID原则 分布式应用系统

C++学习网站

C语言与CPP编程

c++

活动预告 | DataOps + MLOps Meetup

第四范式开发者社区

人工智能 机器学习 开源 DevOps MLOps

用好这28个工具,开发效率爆涨|云效工程师指北

阿里云云效

云计算 阿里云 云原生 研发工具 研发

“碳中和”背后的创新科技!

青云技术社区

云计算 碳中和

数据可视化大屏 - 大屏云极简使用手册

shulinwu

可视化 数据可视化 大屏可视化 智慧大屏可视化 大屏

BFS/DFS/DP 算法案例 LeetCode题目:传递信息

OpenHacker

LeetCode 动态规划 深度优先搜索 算法解析 广度优先搜素

如何使用TensorFlow构建机器学习模型_文化 & 方法_Kesk -*-_InfoQ精选文章